Image Quality Assessment using Synthetic Images

Pavan C Madhusudana ¹ Neil Birkbeck ² Yilin Wang ² Balu Adsumilli ² Alan C. Bovik ¹

¹The University of Texas at Austin, USA

²Google Inc., USA

Video/Audio Quality in Computer Vision, WACV 2022 Waikoloa, Hawaii, USA

Outline of the Talk

Introduction

- Problem Definition
- Motivation
- Ø Methods Description
 - Synthetic Data Generation
 - Auxiliary Task
 - Self-supervised Training
- **3** Experiments and Results
- **4** Conclusion and Future Work

Outline of the Talk

Introduction

- Problem Definition
- Motivation
- 2 Methods Description
 - Synthetic Data Generation
 - Auxiliary Task
 - Self-supervised Training
- 8 Experiments and Results
- ④ Conclusion and Future Work

Problem Definition - Unsupervised IQA

Task - blind image quality prediction

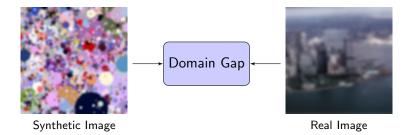
Which has more distortions?

- Learning problem supervised learning
 - Requirement large labeled IQA datasets
- Goal : Unsupervised feature learning for IQA
 - Distortion discrimination using contrastive learning (CONTRIQUE)
- Can synthetic images be used for training?

Motivation

Problem setup

- Training synthetic data
- Testing real data, no additional fine-tuning on real data
- Studying the effects of synthetic data
 - Impact of domain gap between real and synthetic data
 - Significance of semantic information to quantify artifacts

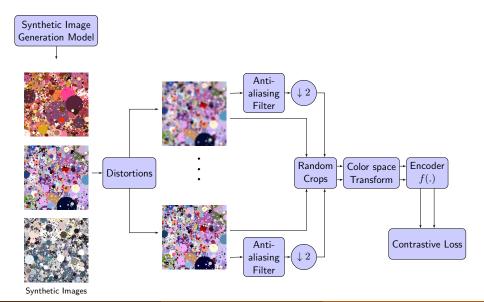


Outline of the Talk

Introduction

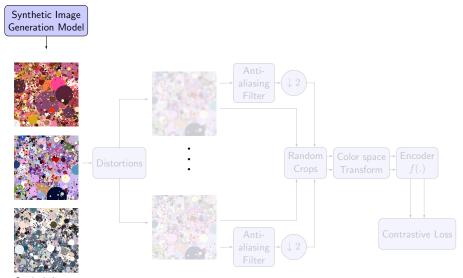
- Problem Definition
- Motivation
- Ø Methods Description
 - Synthetic Data Generation
 - Auxiliary Task
 - Self-supervised Training
- 8 Experiments and Results
- ④ Conclusion and Future Work

Method Overview



Pavan

Synthetic Image Generation



Synthetic Images

Pavan

Synthetic Datasets

DL Image

Textured DL Image

Anime Image

- Dead Leaves (DL) primitive model, less semantic information
 - Image statistics similar to natural images
 - Obtained by superposing discs of random radii and color

Synthetic Datasets - Texture

DL Image

Textured DL Image

Anime Image

- Textured Dead Leaves (DL) addition of textures
 - Image statistics more closer to natural images
 - Texture addition improves model performance

Synthetic Datasets - Animation Images

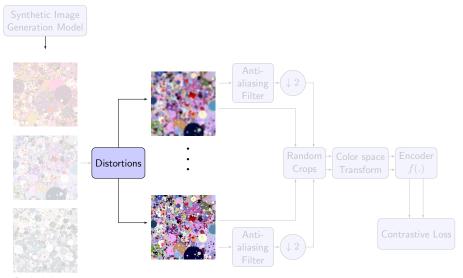
DL Image

Textured DL Image

Anime Image

- Anime images
 - Contain more semantic information than DL images
 - Image generation model simple to sophisticated methods
 - Our experiments Danbooru dataset

Auxiliary Task

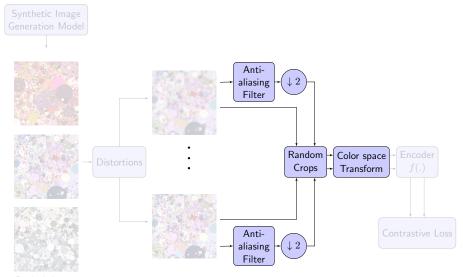


Synthetic Images

Auxiliary Task

- Self-supervised learning training on unlabeled data
- Auxiliary task closely related to original task
 - Labels easily available/generated
- Distortion type and degree discrimination
 - Synthetic image s be distorted by $d^i, i \in \{1, \ldots, D\}$ with degradation degree $l^{ij}, j \in \{1, \ldots, L^i\}$ resulting in a distorted image \tilde{s}_i^j .
- Objective determine d^i and l^{ij} from given corrupted image \tilde{s}_i^j
- Training multi-class classification

Data Augmentations/Transformations



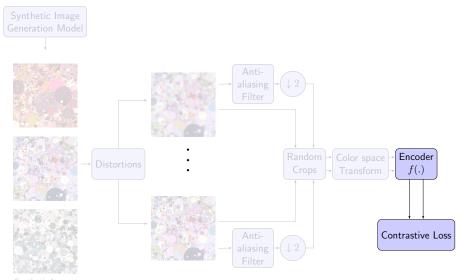
Synthetic Images

Data Augmentations/Transformations

Multiscale learning

- Each image : two scales full and half
- Captures local and global image characteristics
- Colorspace transformations
 - Colorspaces complementary artifacts information
 - RGB, LAB, HSV and grayscale
- Random cropping
 - Facilitates training images of same size in a batch
 - Cropping performed on both scales
 - Cropped versions inherit distortion class labels of parent image

Contrastive Learning



Synthetic Images

Contrastive Loss

- Transformed and cropped images encoder input
- Encoder : any CNN architecture Resnet, VGG etc.
- Loss : normalized temperature-scaled cross entropy (NT-Xent)

$$\mathcal{L}_{i} = \frac{1}{|P(i)|} \sum_{j \in P(i)} -\log \frac{\exp(\phi(z_{i}, z_{j})/\tau)}{\sum_{m=1}^{N} \mathbb{1}_{m \neq i} \exp(\phi(z_{i}, z_{m})/\tau)}$$

N - number of images present in the batch, $\mathbbm{1}$ - indicator function, τ - temperature parameter, P(i) - set containing image indices belonging to class of s_i , |P(i)| - cardinality of P(i)

• Loss computation - pairwise between images in a batch

Evaluating Representations

- Evaluation real images with distortions
- No additional fine-tuning on real data
- Correlation with human judgements proxy for efficiency of features
- Mapping regularized linear regression

$$y = Wk, \quad W^* = \underset{W}{\operatorname{argmin}} \sum_{i=1}^{N} (GT_i - y_i)^2 + \lambda \sum_{j=1}^{M} W_j^2,$$

- y predicted scores, GT ground-truth quality scores λ regularization parameter, W trainable weight vector
- Inference no data transformations
 - Features at two scales concatenation
- Evaluation metric Spearman's rank order correlation (SROCC)

Outline of the Talk

Introduction

- Problem Definition
- Motivation
- Ø Methods Description
 - Synthetic Data Generation
 - Auxiliary Task
 - Self-supervised Training

8 Experiments and Results

4 Conclusion and Future Work

Correlation with Human Judgments

Model	LIVE-IQA	CSIQ-IQA	TID	KADID
BRISQUE	0.939	0.746	0.604	0.528
CORNIA	0.947	0.678	0.678	0.516
HOSA	0.946	0.741	0.735	0.618
DB-CNN	0.968	0.946	0.816	0.851
Hyper-IQA	0.962	0.923	0.840	0.852
CONTRIQUE	0.960	0.942	0.843	0.934
Dead Leaves	0.940	0.852	0.703	0.776
Textured DL	0.950	0.920	0.751	0.820
Danbooru	0.960	0.942	0.790	0.910

- Training with textured DL always improves performance
- Performance delta reflect domain gap, relatively low on LIVE and CSIQ datasets

Correlation with Human Judgments

Model	LIVE-IQA	CSIQ-IQA	TID	KADID
BRISQUE	0.939	0.746	0.604	0.528
CORNIA	0.947	0.678	0.678	0.516
HOSA	0.946	0.741	0.735	0.618
DB-CNN	0.968	0.946	0.816	0.851
Hyper-IQA	0.962	0.923	0.840	0.852
CONTRIQUE	0.960	0.942	0.843	0.934
Dead Leaves	0.940	0.852	0.703	0.776
Textured DL	0.950	0.920	0.751	0.820
Danbooru	0.960	0.942	0.790	0.910

- Models trained on synthetic data performance superior to traditional models
- Semantic information significant, models trained on anime images perform better than DL

Method	KonIQ	CLIVE	FLIVE	SPAQ
BRISQUE	0.665	0.608	0.288	0.809
CORNIA	0.780	0.629	-	0.709
HOSA	0.805	0.640	-	0.846
DB-CNN	0.875	0.851	0.554	0.911
HyperIQA	0.906	0.859	0.535	0.916
CONTRIQUE	0.894	0.845	0.580	0.914
Dead Leaves	0.812	0.671	0.460	0.870
Textured Dead Leaves	0.820	0.677	0.485	0.872
Danbooru	0.841	0.715	0.520	0.886

- No authentic distortions in training data poor performance on UGC
- Semantic information greater significance in capturing realistic artifacts

Outline of the Talk

Introduction

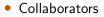
- Problem Definition
- Motivation
- 2 Methods Description
 - Synthetic Data Generation
 - Auxiliary Task
 - Self-supervised Training
- 8 Experiments and Results

4 Conclusion and Future Work

Conclusion and Future Work

- Investigation synthetic data in unsupervised setting
- Analysis : effect of texture and semantic information
- Drawbacks : capturing realistic distortions
- Future Work
 - Training data single image corrupted with multiple distortion types

Acknowledgements



Dr. Neil (YouTube)

Dr. Balu (YouTube)

Dr. Bovik (UT Austin)

• This work was supported by YouTube.

References

- Pavan C Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli, and Alan C Bovik. Image quality assessment using contrastive learning. arXiv preprint arXiv:2110.13266,2021.
- Weixia Zhang, Kede Ma, Jia Yan, Dexiang Deng, and Zhou Wang. Blind image quality assessment using a deep bilinear convolutional neural network. IEEE Trans. Circuits Syst. Video Technol., 30(1):36–47, 2018.
- Shaolin Su, Qingsen Yan, Yu Zhu, Cheng Zhang, Xin Ge, Jinqiu Sun, and Yanning Zhang. Blindly assess image qualityin the wild guided by a self-adaptive hyper network. In Proc. IEEE Conf. Comput. Vision Pattern Recognit., pages 3667–3676, 2020.

Thank You!