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Problem Definition - Unsupervised IQA

• Task - blind image quality prediction

Which has
more distortions?

• Learning problem - supervised learning
• Requirement - large labeled IQA datasets

• Goal : Unsupervised feature learning for IQA
• Distortion discrimination using contrastive learning (CONTRIQUE)

• Can synthetic images be used for training?
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Motivation

• Problem setup
• Training - synthetic data
• Testing - real data, no additional fine-tuning on real data

• Studying the effects of synthetic data
• Impact of domain gap between real and synthetic data
• Significance of semantic information to quantify artifacts

Synthetic Image

Domain Gap

Real Image

Pavan Synthetic - IQA WACV 2022 3 / 15



Outline of the Talk

1 Introduction
• Problem Definition
• Motivation

2 Methods Description
• Synthetic Data Generation
• Auxiliary Task
• Self-supervised Training

3 Experiments and Results

4 Conclusion and Future Work

Pavan Synthetic - IQA WACV 2022 3 / 15



Method Overview
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Synthetic Image Generation
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Synthetic Datasets

DL Image Textured DL Image Anime Image

• Dead Leaves (DL) - primitive model, less semantic information
• Image statistics - similar to natural images
• Obtained by superposing discs of random radii and color
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Synthetic Datasets - Texture

DL Image Textured DL Image Anime Image

• Textured Dead Leaves (DL) - addition of textures
• Image statistics - more closer to natural images
• Texture addition - improves model performance
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Synthetic Datasets - Animation Images

DL Image Textured DL Image Anime Image

• Anime images
• Contain more semantic information than DL images
• Image generation model - simple to sophisticated methods

• Our experiments - Danbooru dataset
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Auxiliary Task
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Auxiliary Task

• Self-supervised learning - training on unlabeled data
• Auxiliary task - closely related to original task

• Labels - easily available/generated

• Distortion type and degree discrimination
• Synthetic image s be distorted by di, i ∈ {1, . . . , D} with degradation

degree lij , j ∈ {1, . . . , Li} resulting in a distorted image s̃ji .

• Objective - determine di and lij from given corrupted image s̃ji
• Training - multi-class classification
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Data Augmentations/Transformations
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Data Augmentations/Transformations

• Multiscale learning
• Each image : two scales - full and half
• Captures local and global image characteristics

• Colorspace transformations
• Colorspaces - complementary artifacts information
• RGB, LAB, HSV and grayscale

• Random cropping
• Facilitates training - images of same size in a batch
• Cropping - performed on both scales
• Cropped versions - inherit distortion class labels of parent image
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Contrastive Learning
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Contrastive Loss

• Transformed and cropped images - encoder input

• Encoder : any CNN architecture - Resnet, VGG etc.

• Loss : normalized temperature-scaled cross entropy (NT-Xent)

Li =
1

|P (i)|
∑

j∈P (i)

− log
exp(φ(zi, zj)/τ)∑N

m=1 1m 6=i exp(φ(zi, zm)/τ)

N - number of images present in the batch, 1 - indicator function,
τ - temperature parameter, P (i) - set containing image indices
belonging to class of si, |P (i)| - cardinality of P (i)

• Loss computation - pairwise between images in a batch
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Evaluating Representations

• Evaluation - real images with distortions

• No additional fine-tuning on real data

• Correlation with human judgements - proxy for efficiency of features

• Mapping - regularized linear regression

y =Wk, W ∗ = argmin
W

N∑
i=1

(GTi − yi)2 + λ

M∑
j=1

W 2
j ,

y - predicted scores, GT - ground-truth quality scores
λ - regularization parameter, W - trainable weight vector
• Inference - no data transformations

• Features at two scales - concatenation

• Evaluation metric - Spearman’s rank order correlation (SROCC)
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Correlation with Human Judgments

Model LIVE-IQA CSIQ-IQA TID KADID

BRISQUE 0.939 0.746 0.604 0.528
CORNIA 0.947 0.678 0.678 0.516
HOSA 0.946 0.741 0.735 0.618

DB-CNN 0.968 0.946 0.816 0.851
Hyper-IQA 0.962 0.923 0.840 0.852

CONTRIQUE 0.960 0.942 0.843 0.934
Dead Leaves 0.940 0.852 0.703 0.776
Textured DL 0.950 0.920 0.751 0.820
Danbooru 0.960 0.942 0.790 0.910

• Training with textured DL - always improves performance

• Performance delta - reflect domain gap, relatively low on LIVE and
CSIQ datasets
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• Models trained on synthetic data - performance superior to traditional
models

• Semantic information - significant, models trained on anime images
perform better than DL
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Shortcomings - Realistic Distortions

Method KonIQ CLIVE FLIVE SPAQ

BRISQUE 0.665 0.608 0.288 0.809
CORNIA 0.780 0.629 - 0.709
HOSA 0.805 0.640 - 0.846

DB-CNN 0.875 0.851 0.554 0.911
HyperIQA 0.906 0.859 0.535 0.916

CONTRIQUE 0.894 0.845 0.580 0.914
Dead Leaves 0.812 0.671 0.460 0.870

Textured Dead Leaves 0.820 0.677 0.485 0.872
Danbooru 0.841 0.715 0.520 0.886

• No authentic distortions in training data - poor performance on UGC

• Semantic information - greater significance in capturing realistic
artifacts
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Conclusion and Future Work

• Investigation - synthetic data in unsupervised setting

• Analysis : effect of texture and semantic information

• Drawbacks : capturing realistic distortions
• Future Work

• Training data - single image corrupted with multiple distortion types
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Thank You!
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