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ABSTRACT

Synthesizing natural images using generative models such as

Generative Adversarial Network (GAN) has received signifi-

cant attention in the recent days due to advancements in deep

learning. The existing generative models employ relatively

simple loss functions derived from L1/L2 norms during train-

ing due to it’s simplistic nature as well very desirable proper-

ties in statistics and estimation. However from the perceptual

viewpoint mean squared error (L2 norm) has a very weak cor-

relation with image quality. In this work the effect of incor-

porating statistics that effectively quantify the ’naturalness’

of an image is studied. In particular distances derived from

Natural Scene Statistics is used as a constraint while learning

the generative model. Specifically the performances of Multi-

scale Structural Similarity (MS-SSIM) and Visual Informa-

tion Fidelity (VIF) and their advantages as well as shortcom-

ings are holistically analyzed.

Index Terms— Generative Adversarial Networks, Boundary-

equilibrium, autoencoders, image quality assessment, struc-

tural similarity index, visual information fidelity

1. INTRODUCTION

Generative Adversarial Networks are a class of unsupervised

generative models which learn the data distribution pdata us-

ing a large corpus of data by means of an adversarial loss.

GANs were first proposed in [1] and they are built around

two functions: the generator G(z) generates a data sample

from pdata for a random z sampled from a uniform distribu-

tion, (z is also referred to as latent input) and the discrimina-

tor D(x) provides inference whether the sample x belongs to

the data distribution pdata. From game theoretic standpoint

GANs are viewed as a minimax zero sum game played be-

tween two players (the two players here are G and D) and the

learning occurs in a joint fashion where D and G train in an

alternate manner.

Since their introduction various GAN architectures have

been proposed in the literature. Deep Convolutional GAN

(DCGAN) [2] used Convolutional Neural Networks (CNN)

both in G and D. DCGAN along with the original GAN

used Jenson-Shannon (JS) Divergence which is a symmetric

version of Kullback Leibler (KL) Divergence in their objec-

tives while training for measuring the distance between the

model distribution pmodel and pdata. However JS divergence

is known to suffer from vanishing gradient problem where

gradients decay to zero resulting in no learning. Wasserstein

GAN (WGAN) [3] addressed this problem by employing

Wasserstein distance in place of JS Divergence. Although

WGAN provided better performance it came at the expense

of slow training. In Energy Based GANs (EBGANs) [4] the

discriminator D is modeled as an energy function by means

of an auto-encoder and has been shown to be easier to train

as well as generate better looking images. Boundary Equi-

librium GAN (BEGAN) [5] is motivated from EBGAN but

instead of matching the data distributions it aims to match

loss distribution of the autoencoder. In this work I restrict all

the experimental analysis to the BEGAN model.

The main challenges in training GANs stem from the fact

there exists no straightforward way in determining the hy-

perparameters. The convergence of GANs is strictly tied to

particular choice of hyperparameters which are very sensitive

to the choice of dataset as well as GAN architecture. Also

GANs easily suffer from mode collapse where it learns to

generate a single image for every latent input z. Also the

GAN objectives are typically multimodal where convergence

does not necessarily translate to generating a naturalistic im-

age. The existing GAN objectives do not employ any measure

of naturalness in their objectives and typically use loss func-

tions which have been shown to have good statistical prop-

erties for convergence. To enforce ’naturalness’ in generated

images [6] proposed employing Multi-Scale Structural Sim-

ilarity Index (MS-SSIM) in GAN objective. In this work an

effort is made to explicitly incorporate Natural Scene Statis-

tics (NSS) in GANs and analyze it’s behavior with regard to

improving the naturalness of generated images.

2. MODEL DESCRIPTION

This section provides a brief overview of BEGAN model. In

the original GAN method [1] GAN objective was a minimax
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Fig. 1: Comparison of distribution of divisive normalized co-

efficients. In the above plot the distribution of Gaussian blur

distortion is compared with that of the reference

function shown in equation 1

min
G

max
D

V (D,G) = Ex∼pdata(x)
[log(D(x))]

+ Ez∼pz(z)[log(1−D(G(z)))], (1)

where pdata is the true data distribution and pz(z) is the

distribution from which sample z is drawn from. In case of

BEGAN the discriminator is replaced by an auto-encoder. If

x ∈ RNx , then D(x) : RNx → RNx , BEGAN aims to match

auto-encoder loss distributions using Wasserstein (earth-

mover) distance. The loss function for the auto-encoder is

given by

L(x) = |x−D(x)|n;n = 1, 2, (2)

where L(x) is the loss of real image sample x and L(G(z)) is

the corresponding loss of generated sample G(z). Since the

aim is to match the loss functions with respect to Wasserstein

distance, upon modification GAN objective reduces to

LD = L(x)− ktL(G(z))

LG = L(G(z)) (3)

kt+1 = kt + λk(γL(x)− L(G(z)),

where γ ∈ [0, 1] is a hyperparameter referred to as diversity

ratio mathematically represented as

γ =
E[L(G(z))]

L(x)
, (4)

where γ term balances between two goals: auto-encode real

images and discriminate real from generated images. Lower

values of γ gives more prominence to auto-encoding while

larger values result in more diversified image model. The

Fig. 2: Human Visual System model employed in VIF

term kt ∈ [0, 1] is a parameter at each iteration step in order

to maintain the equilibrium E[L(G(z))] = γE[L(x)]. The

network architecture employed in BEGAN is shown in Fig.

4.

3. NATURAL SCENE STATISTICS

The loss function defined in equation 2 translates to either

Mean Squared Error (MSE) or Mean Absolute Difference

(MAD). From the image quality assessment literature it has

been well studied that both of these metrics are weakly corre-

lated with human perception. In other words the auto-encoder

loss does not explicitly require the solution to be an image

that follows statistics associated with natural images. A sim-

ple fix will be to add an additional constraint in the form of

loss function. Mathematically it can be written as

L(x) = λ1L1(x) + λ2L2(x), (5)

where L1(x) is MSE/MAD and L2(x) is a measure of devi-

ation of generated images from that of natural images. In [6]

MS-SSIM was used as L2(x). In this project a more funda-

mental way of measuring deviation is studied.

It has been well studied in the perception literature that

natural images follow certain behavior which is not observed

in distorted/synthesized images [7]. For instance, it is widely

observed that the average power spectrum magnitude of a nat-

ural image follows an approximate inverse square law with

respect to frequency. Also another widely used observation

is that the distribution of band pass coefficients of natural

images follow a heavy tailed distribution implying the non-

Gaussian nature of natural images in band-pass/wavelet do-

main. The latter has been successfully used in image quality

metrics such as BRISQUE [8], NIQE [9] etc. A simple way to

find deviation between the distributions is to measure the KL

Divergence. In [10] a Gaussain Scale Mixture (GSM) based

transform called divisive normalization (DN) was proposed

which tries to gaussianize the distribution of subband coeffi-

cients. However the same argument does not hold in case of

distorted images, thus the deviation from the reference distri-

bution is an indicator of quality. If the subband is denoted by

Y , then by GSM model Y ≡ sU , where ≡ denotes equality

in distribution, s ≥ 0 is a scalar random variable and U is a

Gaussian random vector with zero mean and known covari-

ance CU . It is also assumed that s and U are independent.

In case of subbands, subband coefficients constitute Y , CU is



Fig. 3: Sample images from CelebA (left) and STL-10 (right) datasets

empirically computed and s is calculated through maximum

likelihood estimation (MLE) given by

ŝ = argmax
z

log(p(Y/s))

=

√

Y TC−1
U Y

N
(6)

An illustration of deviation observed in distribution of

divisive normalized coefficients is shown in Fig. 1 where

the distribution of Gaussian blur distorted image is compared

with that of reference image.

Calculating KL divergences poses practical challenges.

Often calculating the density functions for every image is

cumbersome and inaccurate which affects the calculated

value. And KL divergence is not symmetric as well as un-

bounded, the latter has a profound effect in the initial stages

of GANs where the distribution of generated images signif-

icantly deviate from that of natural images resulting in very

large KL divergence, thus affecting the learning process. Tak-

ing motivations from information theory, Visual Information

Fidelity (VIF) [11] employs mutual information in place of

KL divergence to measure the quality and has been shown to

perform well in a variety of tasks. In this work the effect of

using VIF in a GAN scenario is studied.

A brief description of VIF is provided here. VIF is mo-

tivated from information theoretic standpoint of human vi-

sual system as shown in Fig. 2 where the distorted image is

equivalent to an image passing through a noisy communica-

tion channel. All the signals shown in Fig. 2 are assumed to

be in wavelet domain with C following a GSM model

C ≡ sU (7)

D ≡ gC + V (8)

where g is a deterministic gain factor and V is a zero

mean stationary additive Gaussian noise with covariance

CV = σ2
vI. Here g and CV characterize the nature of distor-

tion. Also

E = C +N (9)

F = D +N ′, (10)

where N and N ′ constitute noise introduced by the visual

system. Here as well for simplicity it’s assumed that N and

N ′ are zero mean Gaussians with covariance CN = CN ′ =
σ2
nI. The difference between the mutal information I(C;E)

and I(C;F ) is an indicator of the distortion suffered which

in turn leads to measuring image quality. Using properties of

mutual information the expression can be simplified as,

I(C;E) =
1

2

N
∑

i=1

log

(

|s2iCU + σ2
nI|

|σ2
nI|

)

(11)

I(C;F ) =
1

2

N
∑

i=1

log

(

|g2i s
2
iCU + (σ2

n + σ2
v)I|

|(σ2
n + σ2

v)I|

)

, (12)

where |.| denotes determinant,CU , σn, σv are empirically cal-

culated using given reference and distorted images while g
is calculated using linear regression of equation 8 for every

wavelet coefficient. Finally the VIF score is obtained as a



Fig. 4: Network architecture of generator and discriminator in BEGAN. Image obtained from [5]

ratio calculated across different subbands

V IF =

∑

j∈subbands I(C
j ;F j)

∑

j∈subbands I(C
j ;Ej)

(13)

Since distortion introduces information loss, the mutual infor-

mation I(C;E) ≥ I(C;F ). Thus V IF ∈ [0, 1].

4. MODEL DESCRIPTION

This section contains the details of the model as well as the

metrics employed to holistically evaluate the trained model.

Also a brief description of the datasets used for training and

the parameters used while training is provided.

For constraining the images to be more ’natural’, the VIF

is employed in L2(x) term in equation 5 as

L2(x) = 1− VIF(x,D(x)), (14)

as high quality images have larger VIF values and thus re-

sult in lower loss values. VIF is calculated on subbands ob-

tained by decomposing the given image into steerable pyra-

mids [12]. Also L2(x) = 1 − MS-SSIM(x,D(x)) proposed

in [6] is used to compare the performance with VIF loss. All

the experiments are conducted by keeping the architecture of

GAN constant, which in this case is the BEGAN architecture

as shown in Fig. 4.

4.1. Dataset

Training GANs necessitate the need of large quantum of data.

In this work the GANs are evaluated on CelebA [13] and STL-

10 [14] datasets. CelebA consists of more than 200,000 face

images of celebrities. The data was pre-processed by employ-

ing a face detection algorithm and images which had low con-

fidence in detecting faces were rejected. The selected images

were then downsampled to 128 × 128 and linearly scaled to

lie in [−0.5, 0.5].
STL-10 dataset consists of more than 100,000 images

captured across diverse scenes, all of which have a resolution

96× 96. In case of STL-10 as well, the images were linearly

rescaled to lie in [−0.5, 0.5]. Sample images from CelebA

and STL-10 databases are shown in Fig. 3.

I used the default parameters recommended by the authors

in [5] such as λk = 0.001, k0 = 0, γ = 0.7 which are used in

the update expression in equation 3. The models were trained

for approximately 100,000 iterations with a batch size of 16.

The steerable subbands used in computing VIF in equation 14

were selected as recommended by the authors in [11].

4.2. Training

Training was conducted separately for CelebA and STL

databases. The dimension of the latent input z in both the

cases was fixed to 64 while the number of filters in the de-

coder/encoder (in Fig. 4 the variable n corresponds to number

of filters) was fixed to 128 as recommended by the authors

in [5]. The number of filters define the complexity of the

model. The choice of number of filters is a trade-off where

having large number of filters can make it hard to train due

to higher number of parameters and possibly overfit the data,

while having lower number of filters can make the model sim-

plistic in nature with the model not learning the intricacies of

the training data. All the models were trained using a Nvidia

Tesla P100 GPU, with the original BEGAN and BEGAN with

MS-SSIM loss requiring approximately 18 hours to train for

100,000 iterations, while BEGAN with VIF loss required

more than 40 hours to do the same. The significantly longer

time for model with VIF loss is attributed to the complex

operations involved in computing VIF (particularly involving



(a) BEGAN

(b) BEGAN with MS-SSIM loss

(c) BEGAN with VIF loss

Fig. 5: Image generation progression of BEGAN with different loss functions across iterations for CelebA database. The

iterations increase from left to right. More images are attached in Appendix A
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Fig. 6: Variation of FID with iterations for CelebA dataset

steerable pyramid decomposition as well as matrix inversion

given in equation 6). In all the above cases mini-batch gradi-

ent descent with Adam optimization [15] was employed with

a batch size of 16 images per iteration. All the experiments

were conducted with loss functions L1(x) and L2(x) in equa-

tion 5 receiving equal weightage with λ1 = λ2 = 0.5 and

L1(x) being equal to L1 norm.

4.3. Evaluation Methodology

For comparing the performance of the proposed approach

with other loss functions, a metric called Fréchet Inception

Distance (FID) [16] is used. FID is a statistically inspired

technique which measures the quality of generated samples

using Inception network [17] to compute the features from a

specific layer. The generated images are fed to an inception

model that was trained on Imagenet database and features are

obtained from a particular layer. These features are empiri-

cally observed to follow a multivariate Gaussian distribution

for large class of images. The mean and covariance are cal-
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Fig. 7: Variation of BRISQUE with iterations for CelebA

dataset

BEGAN BEGAN-MS-SSIM BEGAN-VIF

FID 27.30 26.18 65.65

BRISQUE 56.01 52.21 58.41

Table 1: Quality scores for different BEGAN methods for

CelebA dataset.

culated for both real data as well as generated data using

these computed features and the distance between two Gaus-

sians is measured by Fréchet distance [18] (also known as

Wasserstein-2 distance) in order to quantify the quality of the

generated samples.

FID(x, g) = ||µx − µg||
2
2 + Tr(Σx +Σg − 2(ΣxΣg)

1
2 ),
(15)

where (µx,Σx) and (µg,Σg) are the mean and covariance

matrix of features obtained from real and generated data re-

spectively. FID scores are negatively correlated with visual

quality where lower distance imply that the distribution of



(a) BEGAN

(b) BEGAN with MS-SSIM loss

(c) BEGAN with VIF loss

Fig. 8: Image generation progression of BEGAN with different loss functions across iterations for STL-10 database. The

iterations increase from left to right. More images are attached in Appendix B
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Fig. 9: Variation of FID with iterations for STL-10 dataset.

BEGAN BEGAN-MS-SSIM BEGAN-VIF

FID 153.93 116.47 200.42

BRISQUE 52.41 47.74 54.41

Table 2: Quality scores for different BEGAN methods for

STL-10 database.

generated images is closer to that of the real data, thus higher

quality.

I also used Blind/Referenceless Image Spatial Quality

Evaluator (BRISQUE) [8] score for evaluating the quality of

generated images. BRISQUE is a popular no-reference image

quality assessment metric derived from NSS and measure the

quality based on the deviation observed in the distribution

of contrast normalized coefficients when compared to that of

natural images. BRISQUE provides values lying in [0, 100]
with better quality images receiving higher values. Thus

BRISQUE is positively correlated with image quality which

is in contrast to that of FID.
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Fig. 10: Variation of BRISQUE with iterations for STL-10

dataset.

5. EXPERIMENTS AND RESULTS

This section contains the comparisons in the performance of

three models BEGAN, BEGAN with MS-SSIM and BEGAN

with VIF loss functions across three different quality met-

rics detailed in the previous section. The comparison is made

across two datasets CelebA and STL-10.

The progression of BEGAN training for CelebA across

the number of iterations is illustrated in Fig. 5. It can be

clearly observed that in the initial stages the generated im-

ages are highly distorted, but as the iterations increase the

images become progressively better. The same is illustrated

objectively in Figs. 6 and 7 where FID and BRISQUE scores

are plotted across iterations respectively. From FID plot it

can be concluded that BEGAN-VIF has inferior performance

when compared to other methods although in the initial stages

of training the improvement in performance is similar to MS-

SSIM, it saturates after 20,000 iterations with negligible

change in quality of generated images. This observation



translates to the loss of details in the generated images ob-

tained from BEGAN-VIF (This can be observed from Fig. 5

as well as in Appendix A). A possible explanation for this be-

havior can be that employing NSS alone might be insufficient

in capturing all the attributes of natural images. Although

the loss function L(x) consists of both L1(x) corresponding

to L1 norm and L2(x) derived from NSS, the performance

drastically reduces for L2(x) = 1 − V IF (x,D(x)) when

compared to that of MS-SSIM. One possible way to explain

this is that VIF does not explicitly measure the details (the

presence/absence of edges) of the image but it only character-

izes the deviation in the distribution as a whole. So the facial

expressions which are perceptually significant appear to have

no influence on the predicting VIF score thus resulting in a

saturating behavior.

Observing variation of BRISQUE in Fig. 7 leads to

contradictory implications as BEGAN-VIF seemingly has

a higher value than other models although visually images

generated from other models have better quality. Also the

variation of BRISQUE values is restricted to only between

[35, 55]. These two observations indicate that BRISQUE

which is itself a trained model might not be capturing the

distortions that is observed in these generated images. The

BRISQUE is trained on images suffering from commonly ob-

served distortions such as blur, JPEG etc. However in GAN

images the artifacts are more geometric in nature having un-

natural shapes and structures. Table 1 lists the best objective

score obtained for different models.

The progress of BEGAN training in case of STL-10

database in Fig. 8. It can be observed from the figure that

the quality of generated images is significantly poorer than

that of CelebA dataset. This can be attributed to the fact

that the STL-10 dataset consists of a wide variety of scenes

as opposed to just face images in CelebA. In other words

CelebA has more well defined structure in the form of faces

as opposed to diverse images in STL-10 requiring the gen-

erative model to be more complex for encapsulating wide

variation in scenes. Also BEGAN as well as BEGAN-VIF

fails to sufficiently converge to the optimal saddle point of

the GAN objective leading to mode collapse where the gener-

ated images are same regardless of latent inputs as shown in

Fig. 8. This indicates that the architecture that has a superior

performance for a particular dataset might not achieve similar

performance when employed on a different data implying the

data sensitiveness of the trained model.

Fig. 6 shows the variation of FID with iterations. it fol-

lows the observation that BEGAN and BEGAN-VIF didn’t

sufficiently converge thus resulting in higher FID values. In

case of BRISQUE shown in Fig. 10 the observation is similar

to that observed for CelebA with BEGAN-VIF having larger

values although visually generated images have poor quality.

Table 1 lists the best objective score obtained for different

models for STL-10 data.

6. DISCUSSION AND CONCLUSION

Using two player zero sum game strategy for image genera-

tion task produces images that seemingly appear ’unnatural’

due to perceptual artifacts. The existing GAN frameworks

do not incorporate any perceptual quality constraint in their

model thus leading to images not necessarily following the

statistics of natural images. In this work an attempt is made

in constraining the model to follow NSS by means of em-

ploying a metric measuring the deviation of the distributions

between the natural and distorted images. Towards this end

the quality metric VIF was used in the training procedure of

BEGAN and it’s performance was compared to the original

BEGAN as well as BEGAN with MS-SSIM model. The mo-

tivation to employ VIF arises from it’s treatment of measuring

the quality as a difference in the mutual information, which in

turn is closely related to KL Divergence. Although VIF im-

poses NSS constraints, performance wise it fails to achieve

better quality images when compared with MS-SSIM model.

It specifically performs poorly in generating intricate details

which have profound influence on the quality particularly in

facial images.

There are some fundamental limitations to all the above

models discussed in this work. Firstly the above models are

very sensitive to training data. In this work it was seen that

a model with superior performance on facial images has a

drastic performance reduction in image quality when trained

on a different class of images. This significantly restricts the

generalisability of the model across different classes of data.

Secondly the models are very sensitive to hyperparameters,

particularly the learning rate and diversity ratio used in equa-

tions 3 and 4. Even minor variations in these values can affect

the convergence of these models leading to mode collapse.

Additionally the choice of these parameters are often random

with no particular justification reasoning the achieved perfor-

mance.

7. FUTURE WORK

There are two different arenas that could be looked upon.

First is to improve generated image quality. This can be done

either by arriving at a different architecture or by imposing

perceptual quality constrains in a more direct fashion instead

of just using in the loss function. One possible approach can

be imposing certain constraints at every layer of the GAN.

Second is to design a better metric to objectively quantify the

quality of generated images. It was seen in this work that

BRISQUE performed poorly in deciding the quality and of-

ten had no correlation with observed visual quality. Although

FID performed well it is inherently biased towards a particu-

lar data (in this case it’s ImageNet database) since it employs

a trained Inception model for providing quality scores.
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A. CELEBA DATABASE RESULTS

In Figs. 11,12 and 13 the generated images at three different

iterations of training is illustrated. It can be clearly observed

(a) iter -7319

(b) iter -36599

(c) iter -100039

Fig. 11: Images generated at different iterations of training

with BEGAN

that in the initial stages the generated images are poor qual-

ity while the quality improves upto certain number of steps

beyond which it saturates. Also the visual image quality ob-

tained with BEGAN-VIF loss is comparatively poor when

(a) iter -7319

(b) iter -36599

(c) iter -100039

Fig. 12: Images generated at different iterations of training

with BEGAN with MS-SSIM loss



compared to other methods. (The images can be zoomed in

to clearly observe the image quality)

(a) iter -7319

(b) iter -36599

(c) iter -100039

Fig. 13: Images generated at different iterations of training

with BEGAN with VIF loss

B. STL-10 DATABASE

STL-10 database consists a diverse category of scenes. The

results in the initial iterations appear to be random noisy im-

(a) iter -12199

(b) iter -31719

(c) iter -70759

Fig. 14: Images generated at different iterations of training

with BEGAN



ages but the quality doesn’t improve significantly with more

steps as was the case in CelebA dataset. This is illustrated in

Figs. 14, 15 and 16. they contain random structures which ap-

(a) iter -12199

(b) iter -31719

(c) iter -70759

Fig. 15: Images generated at different iterations of training

with BEGAN with MS-SSIM loss

pear to be quite unnatural. (Images can be zoomed for better

clarity)

(a) iter -12199

(b) iter -31719

(c) iter -70759

Fig. 16: Images generated at different iterations of training

with BEGAN with MS-SSIM loss
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