
Optimization with Optimistic Descent Algorithms :
Review and Applications

Pavan Chennagiri,Wenqing Zheng, Yiyue Chen, Zhenqiang Ying
Department of Electrical and Computer Engineering

University of Texas at Austin
Austin, TX 78712

pavancm, yiyuechen, w.zheng, zqying@utexas.edu

Abstract

This work focuses on the review and applications of extra gradient methods popu-
larly referred to as optimistic descent algorithms. First we introduce the concept
optimistic mirror descent (OMD) and provide intuition as well as motivation behind
this concept. Second we evaluate the performance of optimistic methods across a
host of applications. In particular we compare the performance of OMD in convex,
non-convex and saddle point problem settings. Lastly we observe that OMD has
certain fundamental limitations and only outperforms the existing methods under
certain specific considerations.

1 Introduction

Stochastic gradient descent (SGD) based methods have been receiving significant attention in the
recent days especially due to their simplistic nature as well their success in deep learning based
methods. Although SGD has comparatively slower convergence rate, various methods such as SGD
with momentum, Adagrad [1], Adam [2] have been proposed to perform better than the naive SGD.
In this work we focus on a particular class of algorithms which are based on extra gradient technique
and improve on the exiting SGD based methods. Extra gradient methods differ from SGD by having
an intermediate step for calculating additional gradient.

The method of employing additional gradient is generally referred to as Optimism and hence these
methods are collectively referred to as optimistic descent methods. The optimism stems from the
involvement of additional gradient in the hope that it will push the training along incumbent gradient.
Optimistic methods have roots in mirror descent and mirror prox methods which is briefly reviewed
in the next paragraph.

Mirror Descent For a strictly convex φ, where φ is a mirror map, mirror descent is given by

∇φ(yk+1) = ∇φ(xk)− η∇f(xk)

xk+1 = arg minDφ(x, yk+1)

= arg min η〈∇f(xk), x〉+Dφ(x, xk)

(1)

where Dφ(x, xk) = φ(x)− φ(xk)− 〈∇φ(xk), x− xk〉 is the Bregman divergence. Mirror descent
can be thought as a generalization of standard gradient descent as eqn 1 with φ(x) = 1

2 ||x||
2
2 results

in gradient descent update expression.

Optimistic Mirror Descent The optimistic version of mirror descent was first introduced in the
context of online learning in [3] particularly to tackle saddle point problems, although it’s applicability
is not just restricted to saddle point objectives.

OMD Algorithm. Let φ be a 1-strongly convex function and let y0 = arg minφ(y). Suppose that
at the beginning of every round t, we have access to Mt+1, a vector computable based on past
information or side information, then OMD is given by

yt+1 = arg min
x
ηt〈Mt+1, x〉+Dφ(x, xt),

xt+1 = arg min
x
ηt〈∇f(yt+1), x〉+Dφ(x, xt)

Here y is the intermediate sequence and Mt is the prediction sequence which employs information
from past gradients. For Mt+1 = ∇f(xt) OMD reduces to Mirror Prox algorithm. Other popular
choices for Mt+1 include Mt+1 = 1

t

∑t
k=0∇f(xk).

In this work we holistically evaluate and compare the performance of OMD algorithm across different
class of problem settings and applications. The rest of the report is organized is as follows. In Section
2 and 3 we analyze OMD performance on convex and non-convex problem settings respectively
followed by saddle point objectives in Section 4. We provide some concluding remarks in Section 5
followed by some pointers on future work in Section 6.

2 Convex Optimization Problem

In this section, we consider a specific convex optimization problem and experiment on the performance
of mirror descent algorithm, optimistic mirror descent algorithm, its generalized version and other
algorithms.

2.1 Problem Formulation

Consider the problem of robust regression. The problem can be formulated as a convex optimization
problem:

min
β

: ||Xβ − y||1

s.t. : β ∈ X
Here the constraint set X is the simplex: X = {β : β ≥ 0,

∑
βi = 1}.

2.2 Extra Gradient Method in Convex Optimization and Its Generalization

Extragradient method was first proposed by Korpelevich in [4] and it has been used to solve variational
inequality problems, especially in saddle point problems. After Korpelevich’s work, other authors
extended this extra-gradient method to other problems. For convex constrained optimization problems,
[5] considered the performance of extra-gradient method under error bounds assumptions. When the
objective function is the sum of two functions, the first being smooth and the second being convex(the
results were later extended when both functions are convex), [6] showed sublinear convergence of
extra-gradient method, as for gradient-based methods.
In extra-gradient method, the use of an additional projected gradient step can be seen as a guide
during the optimization process. The introduction of mid-point can allow us to examine the geometry
of the problem and curvature information near current point. In this example, we use the Mirror Prox
algorithm(introduced in Section 1) as optimistic mirror descent.
The generalized version of the extra-gradient method was introduced in [7], where (k− 1) mid-points
are inserted per iteration(in extra-gradient method, there is only one mid-point per iteration and
k = 2). The generalized extra-gradient method can be written as:

Xn+ 1
k

= arg min
x′∈X

{〈−γnĝn, Xn − x′〉+D(x′, Xn)}

Xn+ k−s
k

= arg min
x′∈X

{〈−γnĝn+ k−s−1
k

, Xn − x′〉+D(x′, Xn)}

Xn+1 = arg min
x′∈X

{〈−γnĝn+ k−1
k
, Xn − x′〉+D(x′, Xn)}

where 1 ≤ s ≤ k − 2.
The result in Theorem 5 in [7] shows the convergence and computational cost of generalized extra-
gradient method in saddle point problem. However, to our knowledge, no result has been given in
convex optimization problem. We therefore include this method in the experiments.

2

(a) Loss with step size 0.01 1
t+1

(b) Loss with step size 0.1 1
t+1

Figure 1: Comparison of 2 step sizes with the results of six algorithms: the x-axis represents iteration
and the y-axis represents loss.

2.3 Experiments and Results

2.3.1 Setup

This is an extension of computational problems in homework 4 and we use the same data generated
from the 20 newsgroups dataset. Here X is an n × m matrix, where n is the number of unique
words considered and m is the number of topics, and y is a noisy word frequency. In the experiment,
n = 1000 and m = 20. The goal is to recover the distribution over topics β.
The problem is solved using stochastic (sub)gradient descent(SGD), mirror descent(MD), optimistic
mirror descent(OMD), generalized OMD, Adam and Optimistic Adam. Generalized OMD is in-
troduced in [7] and here we plug in one more mid-point per iteration. The step size is O(1

t+1) at
iteration t . We vary in step size and plot the loss over iterations using these six methods, respectively.

2.3.2 Results

First we compare the three mirror descent related algorithms. These algorithms decrease the loss
rapidly for several steps at the beginning but we see a much slower convergence in the following
iterations. Optimistic MD(extra-gradient method) and Generalized OMD(generalized extra-gradient
method) perform similarly(not exactly the same) and outperform vanilla mirror descent. Larger step
size gives faster convergence but these three algorithms still perform quite similarly. We cannot see
an obvious improvement by using generalized extra-gradient method in this optimization problem.
Adam and Optimistic Adam outperform mirror descent methods after 30 iterations and give lower
loss when the step size is 0.01 1

t+1 . They also perform similarly but not exactly the same. When the
step size is 0.1 1

t+1 , there is no obvious difference among all algorithms except Projected subgradient
descent. Projected subgradient descent converges slowly but reaches the same loss as Adam related
methods finally.
Overall, in this robust regression problem, the introduction of optimistic methods and its generalized
version does not show better performance.

3 Non-Convex Optimization Problem

In this section, we will show the performance on a non-convex optimization problem. Here, we
choose image quality prediction as an example to show that training deep regression networks with
optimism is both feasible and promising.

3.1 Background

Image Quality Assessment (IQA). We live in an increasingly visual digital world. However, images,
as a common container of visual information, suffer from different degree of various distortions

3

Figure 2: Subband statistics of an image for different distortions.

introduced during capturing, storing and/or transmission. Image quality assessment techniques are
used to predict the visual quality of such distorted images, since using subjects to assess the visual
quality is time-consuming, expensive, and unfeasible for real-time applications.

For IQA problem, the input is a color image and the output is a scalar score indicating the visual
quality of the image. A higher number corresponds a higher image quality. The ground truth quality
score, a.k.a mean opinion score (MOS), is computed by averaging the opinion scores given by a
group of human viewers. We use deep neural networks to learn to predict MOS in an end-to-end
manner. The problem can be formulated as:

min
θ
`(f(θ, Ii), si) (2)

where f is the deep neural network with trainable parameters θ, Ii is the i-th batch of the training
data, `(., .) is the loss function, si is a vector of MOSs corresponding to each image in the i-th batch.

Natural Scene Statistic (NSS). Most existing IQAs are developed based on the statistics of natural
images. Natural un-distorted images possess certain statistical properties that hold across different
image contents. For example, it is well known that the power spectrum of natural scenes fall-off as
(approximately) 1/fγ , where f is frequency. Natural scene statistic (NSS) models seek to capture
those statistical properties of natural scenes that hold across different contents. NSS-based IQA
approaches assume that the presence of distortions in natural images alters the natural statistical
properties of images, thereby rendering them (and consequently their statistics) unnatural, as shown
in Fig. 2. The goal is to capture this “unnaturalness” in the distorted image and relate it to perceived
quality.

3.2 Experiment Setup

Optimizers. Since the objective function is changing with different inputs, it can be viewed as an
online learning problem where the players plays θ and the environment provides Ii and si. Here, since
training images are sampled from natural image database and the human opinion scores are highly
correlated with the NSS features, we can assume that the gradient sequence is predictable. Therefore,
we expect that introducing optimism to optimization algorithms can provide faster convergence rate.

Networks. In deep learning, the convolutional neural network (CNN) is commonly applied to
analyzing visual imagery. We used a shallow CNN with 3 layers of kernel size 3, stride 1, and no
padding. The channel numbers are 3, 16, and 16 sequentially. The output layer produces a scalar
number supervised by the target image quality score (MOS). We used ReLU as activation function
and didn’t apply fancy self attention, batch normalization, or dropout. Mean Square Error between
predicted scores and the ground truth scores are used as the loss function.

Databases. We use two image quality databases: CLIVE [8] and KonIQ [9]. The former contains
1162 images (175 ratings per image), and the latter contains 10,073 images annotated by 1467 crowd
workers (120 ratings per image).

3.3 Results

We follow the common pratice in the field of IQA to use SROCC(Spearman’s rank correlation
coefficient) to measure the performance of the quality score prediction. A higher SORCC indicates

4

http://live.ece.utexas.edu/research/ChallengeDB/
http://database.mmsp-kn.de/

Figure 3: Results on CLIVE database.

Figure 4: Results on KonIQ database.

opt. func. train data SROCC on CLIVE SROCC on KonIQ

Adam KonIQ 0.434014 0.612605
OAdam KonIQ 0.471167 0.663117
SGD KonIQ 0.351817 0.525014
OSGD KonIQ 0.449329 0.560982
Adam CLIVE 0.475049 0.488603
OAdam CLIVE 0.469636 0.500744
SGD CLIVE 0.522416 0.62065
OSGD CLIVE 0.557891 0.613741

Table 1: Performance on two databases.

a better performance. In all cases, optimistic versions achieve better performance. As we can see
from Fig. 3, when training on small databases, SGD/OSGD gives faster convergence but the curves
of the testing error are more fluctuating and unstable compared with that of Adam/OAdam. This is
because the statistical characteristics of the sampled data vary more when sampling a batch from a
smaller data set. Adam and OAdam perform more stable because they introduce moving average and
bias correction. When training on a large database, both Adam/OAdam and SGD/OSGD give stable
convergence on the validation losses.

Table 1 shows the cross database validation results. Models trained on one dataset can generalize
well on another database, since their performances are comparable with those trained and validated
on the same database.

4 Saddle Point Objectives

Saddle point objectives involve a minimax optimization as shown in equation SP which is typically
modeled as a two person zero sum game being played with two optimizers, where the aim of the first
objective will be to achieve least possible loss while the other tries to obtain the highest possible

5

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
x1

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0
x 2

Gradient Descent Dynamics

−160

−120

−80

−40

0

40

80

120

160

(a) Gradient Descent dynamics

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
x1

−10.0

−7.5

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

x 2

Optimistic Mirror Descent Dynamics

−160

−120

−80

−40

0

40

80

120

160

(b) Optimistic Mirror Descent dynamics

Figure 5: Comparison of Gradient and Optimistic mirror descent dynamics. The objective employed
is min

x1

max
x2

〈x2, 3 − x1〉 which has saddle point at (3, 0). Black marker indicates the initialization

point

reward simultaneously.

min
x1∈X1

max
x2∈X2

f(x1, x2) (SP)

In case of convex-concave f , there exists a unique saddle point (x∗1, x
∗
2) guaranteed by Sion’s minimax

theorem. However for non convex-concave problems it’s possible to have multiple saddle points,
many of which may not be the desirable for certain applications. Applying standard gradient descent
on non convex-concave problems may not necessarily yield the optimal solution. Further it may
often diverge for certain class of saddle point objectives as shown in Fig. 5a. Another challenge in
using gradient descent is that it achieves convergence in the average of iterates, however it is often
desirable to have last iterate convergence in many of the applications. Also averaging over all the
iterates maybe a prohibitive approach in some applications such as Generative Adversarial Networks
(GAN) etc.

In [10] the conditions under which the standard gradient descent converges was proved by employing
the concept of coherence. Coherence is motivated from the monotonic property of saddle point
problems which is stated as

〈g(x), (x− x∗)〉 ≥ 0 (MP)
where g(x) = (g1(x), g2(x)) = (∇x1

f(x1, x2),−∇x2
f(x1, x2))

Definition We say that SP is coherent if:

1. There exists a solution p of SP that satisfies MP.
2. Every solution x∗ of SP satisfies MP locally, i.e., ∀ x sufficiently close to x∗.

Intuitively coherence can be thought as a generalization of convex-concave condition. As an extension,
two more conditions can be derived from coherence which are termed as strict and null coherence.
Strict coherence refers to the problem which satisfies monotonic property MP in a strict fashion. One
example for strict coherence is a function f which is strictly convex-concave. Null coherence is the
other end of the spectrum where the equation SP is satisfied with only equality. Bilinear objectives
with interior solutions are example for null coherent objectives: for instance f(x1, x2) = x1x2 has
〈g(x), x〉 = x1x2 − x2x1 = 0 ∀ x1, x2. Lastly, neither strict nor null coherence imply any unique
solution to SP. They are mainly constructs employed to determine the convergence of gradient and
optimistic mirror descent methods.

Theorem 3.1 and it’s corollaries in [10] show that mirror descent (which includes standard gradient
descent as well) converges only when the function f is strictly coherent and diverges for null coherent
problems. This is clearly observed in Fig. 5a where the optimization involves a null coherent
objective.

6

To overcome the drawbacks posed by mirror descent, the authors in [10] propose to use extra gradient
analysis technique as Optimistic Mirror Descent (OMD). OMD was first proposed in the online
learning literature by [3] and was shown to achieve last iterate convergence, a crucial component
in some of the saddle point applications. Theorem 4.1 in [10] proves that OMD converges in last
iterate for coherent problems (for both strictly as well as null coherent cases). OMD for saddle point
is adapted from generic OMD in a slightly modified version with the updates given in equation 3
where minimization is performed over x and maximization over y

xt+1 = xt − 2η∇xt
f + η∇xt−1

f

yt+1 = yt + 2η∇ytf − η∇yt−1f,
(3)

The important thing to be noted here is that only for coherent problems satisfying the assumptions
stated in the Theorem 4.1 in [10] using OMD converges to a saddle point. But the proof does not
provide any guarantee that the rate of convergence is better than the standard gradient descent. Also
applying OMD to problems with multiple saddle points may lead to convergence to one of them,
which need not necessarily be the desired optimal solution. In such cases it is also not known apriori
to which saddle point OMD converges.

4.1 Saddle Point Problems: Experimental Results

In this section the performance of OMD is evaluated on three different tasks, the first one involves
learning mixture of Gaussians on a synthetic data and the second one is image generation task, both
involving training GANs. The last one involves an indoor positioning estimation application. Before
we discuss the experimental results a brief review of GANs is provided in the following paragraph.

Generative Adversarial Networks GANs are a class of unsupervised generative models which
learn the data distribution pdata using a large corpus of data by means of an adversarial loss. GANs
were first proposed in [11] and they are built around two functions: the generator G(z) generates a
data sample from pdata for a random z sampled from a uniform distribution, (z is also referred to
as latent input) and the discriminator D(x) provides inference whether the sample x belongs to the
data distribution pdata. From game theoretic standpoint GANs are viewed as a minimax zero sum
game played between two players (the two players here are G and D) and the learning occurs in a
joint fashion where D and G train in an alternate manner. The minimax objective proposed in [11] is
given by

min
G

max
D

V (D,G) = Ex∼pdata(x)
[log(D(x))] + Ez∼pz(z)[log(1−D(G(z)))], (4)

where pdata is the true data distribution and pz(z) is the distribution from which sample z is drawn
from. Since their introduction various GAN architectures have been proposed in the literature. Deep
Convolutional GAN (DCGAN) [12] used Convolutional Neural Networks (CNN) both in G and D.
DCGAN along with the original GAN used Jenson-Shannon (JS) Divergence which is a symmetric
version of Kullback Leibler (KL) Divergence in their objectives while training for measuring the
distance between the model distribution pmodel and pdata. However JS divergence is known to suffer
from vanishing gradient problem where gradients decay to zero resulting in no learning. Wasserstein
GAN (WGAN) [13] addressed this problem by employing Wasserstein distance in place of JS
Divergence. WGAN objective is given as

min
G

max
D∈D

Ex∼pdata(x)
[D(x)]− Ez∼pz(z)[D(G(z))], (5)

where D is the set of 1-Lipschitz functions. To enforce the Lipschitz constraint, [13] propose weight
clipping to lie within a compact space. However it has been shown in [14] that this weight clipping
often leads to undesired behavior while training such as gradient or explosion or vanishing gradients.
Instead of weight clipping an alternative way to enforce Lipschitz constraint in the form of gradient
penalty was proposed in [14]. The objective in 5 with gradient penalty transforms to

min
G

max
D∈D

Ex∼pdata(x)
[D(x)]− Ez∼pz(z)[D(G(z))] + λEx̂∼Px̂

[(∇x̂D(x̂)− 1)2], (6)

where the final term corresponds to gradient penalty. It is derived from the fact that a differentiable
function is 1-Lipschitz if and only if it has gradients with norm at most 1 everywhere. In eqn 6
λ is a penalty coefficient which penalizes whenever the function violates Lipschitz continuity. As
recommended by authors in [14] we use λ = 10 in all our experiments.

7

step 2000 step 6700 step 13400 step 20000

step 2000 step 6700 step 13400 step 20000

Figure 6: Adam vs Optimistic Adam (top and bottom respectively, learning rate η = 5 × 10−5 in
both cases)

0 2000 4000 6000 8000 10000
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

Ne
ga

tiv
e
W
GA

N-
GP

 L
os
s

Variation of Wasserstein Loss with iterations
Adam
Optimistic Adam
Adam (median filtered)
Optimistic Adam (median filtered)

Figure 7: Variation of WGAN-GP loss with iterations

Gaussian Mixture Models In this experiment we consider data sampled from highly multi modal
mixture of 8 Gaussians similar to the one used in [15]. The task is to learn the distribution of the
mixture model by means of a GAN employing WGAN loss with gradient penalty (WGAN-GP) given
in eqn 6. The generator and discriminator each have 3 fully connected layers with 512 neurons and
Relu activations and generator generates two dimensional vectors. The networks were trained with
Adam [2] and Optimistic Adam which was proposed in [16]. Explicit pseudo code for Optimistic
Adam is provide in Appendix A for reference. The output after 2000, 6700, 13400, 20000 iterations
is shown in Fig. 6. The variation of WGAN-GP loss is compared in Fig. 7. Although both algorithms
appear to have similar convergence rate the output produced by Optimistic Adam appears to be
better than that of Adam as shown in Fig. 6 indicating the convergence to saddle point nature of the
Optimistic method. The models were trained for 20000 iterations with learning rate = 5× 10−5.

Image Generation Task In this section we compare the performance of optimistic methods on
image generation task using GANs. The experiment is performed across two different variations.

First experiment is to check the performance variation across two different datasets. For this purpose
we use CIFAR-10 [17] and CelebA [18] datasets. CIFAR-10 consists of 60,000 images categorized

8

0 20000 40000 60000 80000 100000
Iterations

0

1

2

3

4

5

6

7

8

Ne
ga
tiv
e
W
GA

N-
GP

 L
os
s

Variation of Wasserstein Loss with iterations
Adam
Optimistic Adam
Adam (median filtered)
Optimistic Adam (median filtered)

(a) CIFAR-10

0 20000 40000 60000 80000 100000
Iterations

0

1

2

3

4

5

6

Ne
ga

tiv
e
W
GA

N-
GP

 L
os
s

Variation of Wasserstein Loss with iterations
Adam
Optimistic Adam
Adam (median filtered)
Optimistic Adam (median filtered)

(b) CelebA

Figure 8: WGAN-GP loss variation for CIFAR-10 (left) and CelebA(right)

0 20000 40000 60000 80000 100000
Iterations

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

In
ce

pt
io

n
Sc

or
e

Variation of Inception Score
Adam
Optimistic Adam

(a) CIFAR-10 Inception Score

0 20000 40000 60000 80000 100000
Iterations

100

150

200

250

300

In
ce

pt
io

n
Sc

or
e

Variation of FID
Adam
Optimistic Adam

(b) CelebA FID

Figure 9: Quality variation of generated images

across 10 different classes. All images have a resolution 32 × 32. In case of CelebA, more than
200,000 images of consisting of celebrity faces are available.

Second experiment is evaluating the performance across different architectures of GAN. For this
purpose we use DCGAN [12] with WGAN-GP loss and Boundary Equilibrium GAN (BEGAN)
which uses a modified version Wasserstein loss. For evaluating the quality of generated images we
use two metrics, Inception Score [19] and Fréchet Inception Distance (FID) [20]. In case of Inception
Score, the generated images are applied to Inception model [21] which is pre-trained on ImageNet
database to obtain the conditional label distribution. This along with true image distribution is used
to obtain inception score. Note that Inception score is positively correlated with quality, where larger
values imply better quality images.

FID is similar to Inception Score which uses inception model. The main difference arises on the way
the output from inception model is employed. For FID features are obtained from a particular layer
of the inception model. These features are empirically observed to follow a multivariate Gaussian
distribution for a large class of images. The mean and covariance are calculated for both real data
as well as generated data using these computed features and the distance between two Gaussians is
measured by Fréchet distance [22] (also known as Wasserstein-2 distance) in order to quantify the
quality of the generated samples.

FID(x, g) = ||µx − µg||22 + Tr(Σx + Σg − 2(ΣxΣg)
1
2), (7)

where (µx,Σx) and (µg,Σg) are the mean and covariance matrix of features obtained from real and
generated data respectively. FID scores are negatively correlated with visual quality where lower
distance imply that the distribution of generated images is closer to that of the real data, thus higher
quality.

9

(a) Adam (b) Optimistic Adam

(c) Adam (d) Optimistic Adam

Figure 10: Generated Images CIFAR-10 (top row) and CelebA (bottom row)

The following sections provide more details and results of the experiments we conduct for image
generation task.

DCGAN with WGAN-GP loss We train a DCGAN with WGAN-GP loss for both CIFAR-10 and
CelebA datasets, and compare their performance for Adam and Optimistic Adam optimizers. The
architecture of DCGAN used in our experiments is detailed in Appendix B. The experiments were
performed with a batch size of 64 and the resolution of input images for both CelebA and CIFAR-10
was kept constant at 32× 32. The other hyperparameters were chosen as recommended in [14]. All
the models were trained on Nvidia P100 GPU and took nearly 8 hours for 100,000 iterations. Fig. 8
shows the variation of WGAN-GP objective for 100,000 steps. Note that in both the cases the model
hasn’t sufficiently converged as the objective value is well above 1 indicating the slow convergence
nature of WGAN. It can be observed that optimistic Adam has a slightly faster convergence than
Adam. With regard to the quality of generated images, both Adam and Optimistic Adam achieve
similar performance as illustrated in Fig. 9. The main takeaway from this experiment is that Adam
and Optimistic Adam have negligible difference both with respect to convergence rate as well as
quality of generated images. Note that we are restricting our analysis to 100,000 steps, it is quite
possible that the performance improves/decreases if more iterations are used. Fig. 10 contains a
subset of generated images (images can be zoomed for better quality). Visually the images from both
optimization methods appear to be of similar quality.

Boundary Equilibrium GAN (BEGAN) BEGAN [23] is an extension of WGAN and motivated
from Energy Based GAN (EBGAN) [24] where the descriminatorD is modeled as an energy function
by means of an autoencoder. The objective of BEGAN is to match the loss distributions of real
and generated images, which is in contrast to the traditional GANs which try to match the data
distributions. If x ∈ RNx , then D(x) : RNx → RNx , BEGAN aims to match auto-encoder loss
distributions using Wasserstein (earth-mover) distance. The loss function for the auto-encoder is
given by

L(x) = |x−D(x)|n;n = 1, 2, (8)

where L(x) is the loss of real image sample x and L(G(z)) is the corresponding loss of generated
sample G(z). Since the aim is to match the loss functions with respect to Wasserstein distance, upon

10

0 50000 100000 150000 200000
Iterations

0.05

0.10

0.15

0.20

0.25

0.30

0.35


gl
ob

al

BEGAN Convergence (CIFAR-10)
Adam
Optimistic Adam
Adam (median filtered)
Optimistic Adam (median filtered)

(a) CIFAR-10

0 50000 100000 150000 200000
Iterations

0.05

0.10

0.15

0.20

0.25

0.30

0.35


gl
ob

al

BEGAN Convergence (CelebA)
Adam
Optimistic Adam
Adam (median filtered)
Optimistic Adam (median filtered)

(b) CelebA

Figure 11: Variation of convergence for CIFAR-10 (left) and CelebA (right)

0 50000 100000 150000 200000
Iterations

175

200

225

250

275

300

325

350

Fr
'e

ch
et

 In
ce

pt
io

n
Di

st
an

ce

Variation of FID with iterations
Adam
Optimistic Adam

(a) CIFAR-10 FID

0 50000 100000 150000 200000
Iterations

50

75

100

125

150

175

200

225

250

Fr
'e

ch
et

 In
ce

pt
io

n
Di

st
an

ce

Variation of FID with iterations
Adam
Optimistic Adam

(b) CelebA FID

Figure 12: Quality variation of generated images for BEGAN

modification as discussed in [23], the GAN objective reduces to

LD = L(x)− ktL(G(z))

LG = L(G(z)) (9)
kt+1 = kt + λk(γL(x)− L(G(z)),

where γ ∈ [0, 1] is a hyperparameter referred to as diversity ratio mathematically represented as

γ =
E[L(G(z))]

L(x)
, (10)

where γ term balances between two goals: auto-encode real images and discriminate real from
generated images. Lower values of γ gives more prominence to auto-encoding while larger values
result in more diversified image model. The term kt ∈ [0, 1] is a parameter at each iteration step in
order to maintain the equilibrium E[L(G(z))] = γE[L(x)]. The network architecture employed in
BEGAN is provided in Appendix C. The authors of BEGAN also propose a global convergence using
the equilibrium concept given by

Mglobal = L(x) + |γL(x)− L(G(z))| (11)

This measure can be used to check if the network has converged or has suffered mode collapse where
any latent input provides same output. BEGAN models were trained for 200,000 iterations which
took nearly 16 hours on a Nvidia P100 GPU. In Fig. 11 the variation of convergence measure for
both datasets is illustrated. While the rate of convergence is similar for both optimization methods for
CIFAR-10, it differs for CelebA where Adam has a faster rate than Optimistic Adam. With regard to
generated image for BEGAN, it can be observed from Fig. 12 that for CIFAR-10 both algorithms

11

(a) Adam (b) Optimistic Adam

(c) Adam (d) Optimistic Adam

Figure 13: Generated Images CIFAR-10 (top row) and CelebA (bottom row) with BEGAN

result in similar quality, though the FID values indicate image quality is much worse than those
generated with WGAN-GP. This can be visually compared by observing Figs. 10 and 13.

In case of CelebA, FID values for optimistic Adam saturate after certain number of iterations implying
convergence of the model to a specific saddle point. From Fig. 13 we can observe that the converged
saddle point is not the desired optimal solution as the generated images are blurry in nature when
compared to those generated using Adam. As mentioned previously, in case of optimistic methods
though the convergence is guaranteed, it is quite possible in case of problems with multiple saddle
points to converge to a non-optimal solution. Also the convergence is guaranteed for only coherent
objectives, which is non-trivial to determine in case of GAN objectives due to their inherent non-linear
nature.

4.1.1 Indoor positioning task

System Description Indoor positioning is a key enabler for a wide range of applications, including
navigation, smart factories and cities, surveillance, security, IoT, and sensor networks. Additionally,
indoor positioning can be leveraged for improved beamforming and channel estimation in wireless
communications. The object in this part is to design and train an algorithm that can determine the
position of a user, based on estimated channel frequency responses between the user and an antenna
array.

The final goal of training is to learn a network able to estimate position with high accuracy (low
root-mean-square position error), averaged over all positions in the test dataset.

About the Dataset Channel vectors from a dataset created with the channel sounder are used. The
dataset comprises channel responses and associated position ground truth information, The dataset
are partitioned into training and probe sets as found appropriate for the algorithm development and
training.

The dataset was acquired by the massive MIMO channel sounder described in [1]. Specifically,
channel responses were measured between a moving transmitter and an 8 ∗ 2 antenna array. As
transmitter, an SDR-equipped vacuum-cleaner robot was used, and it drove in a random path on a
4 ∗ 2 m table and transmitted uplink OFDM pilots with a bandwidth of 20 MHz and 1024 subcarriers
at a carrier frequency of 1.25GHz. 10 % of the subcarriers were used as guard bands.

Figure 14 shows an example of ground truth coordinates, measured by a tachymeter with an accuracy
below 1cm. Figure 15 shows a picture of the measurement setup.

12

Figure 14: Indoor Dataset Ground Truth

Figure 15: Indoor Dataset Ground Truth

The available data is stored in two files: i) channel responses, ii) ground truth positions. The
channel variables are mapped to the position in order of the first dimension of numpy array. For
each measurement, the channel is a matrix with dimension: the number of antennas (16) times the
number of used subcarriers (924), so the dimension of the channel database is 17486 (number of
measurements) * 924 * 16. To leverage its real part and imaginary part, we concatenate the real and
imaginary part in one observation together, and form a new matrix ready for training with size: 17486
* 924 * 32. The position database contains the coordinates x,y,z (in order), and the dimension of
position database is 17486 * 3. The whole database is divided into training data-set of size 16000,
and test data-set of size 1486.

Model Description To compare the performance of Adam and Optimistic Adam, we make this
problem a saddle point problem in the first trail, by adopting the structure of GAN to learn the
distribution transformation between the channel matrix and the position vectors. The model flowchart
is shown in Fig. 16, the generator use the CNN to convert channel matrix to estimated position, while
the discriminator takes into both the channel and estimated position to see if the joint distribution
obeys the real channel-position pair. The objective function for posGAN is then:

V (D) = max E
(H,p)∼DB

log(D(H, p))− E
H∼DB

log(D(H,G(H)))− E
(H,p)∼N (0,Σ)

log(D(H, p))

(12)

13

Figure 16: posGAN structure demonstration

0 250 500 750 1000 1250 1500 1750 2000
Epoches

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Tr
ai

ni
ng

 L
os

s

Generator and Discriminator Losses: GAN structure
Gloss: Adam
Gloss: O-Adam

0 250 500 750 1000 1250 1500 1750 2000
Epoches

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

Tr
ai
ni
ng

 L
os

s
Generator and Discriminator Losses: CNN structure

Gloss: Adam
Gloss: O-Adam

Figure 17: Training Losses for two trails

V (G) = min E
H∼DB

− log(D(H,G(H))) (13)

During each epoch, the mean square estimation error is calculated via MSE = E(||p̂− p||2), where
the p̂ is the position from the generator, and p is the ground-truth position mapped to the real database.
We first compared the results of training the GAN with optimistic Adam, Adam, Adagrad, optimistic
Adagrad, and SGD, then changed the network structure and compared the performance on a smaller
network.

In the first trial, to subtract the position information, we use the GAN structure illustrated in 16. In
the second trail, we removed the Discriminator sub-network and directly train the Generator, with the
altered objective function being:

V (G) = min E
H∼DB

||p−G(H)||2 (14)

We take the convolutional neural network with stride 2. In this case, it is not a saddle point problem,
and the comparison of performances of OAdam and Adam is also compared.

Experiment results The comparison among optimistic Adam and Adam are shown in Fig. 17,Fig.
18, and Fig. 19.

It can be seen from Fig 17 that in this experiment setting and this assumption, with saddle point
problem (GAN structure in trail one) the optimism contributed to the speed-up of convergence at
the initial stage of training, but in this realization, the Adam start to outperform OAdam after 600
iterations, and the final training loss of Adam is slightly small than Adam. In the second trail, the

14

0 250 500 750 1000 1250 1500 1750 2000
Epoches

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Po
sit

io
n

M
SE

Position Estimation Error on Test Set: GAN structure
 MSE: Adam
 MSE: O-Adam

0 250 500 750 1000 1250 1500 1750 2000
Epoches

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Po
sit

io
n

M
SE

Position Estimation Error on Training Set: GAN structure
 MSE: Adam
 MSE: O-Adam

Figure 18: Train and Test MSE for trail 1

0 250 500 750 1000 1250 1500 1750 2000
Epoches

0.5

1.0

1.5

2.0

2.5

Po
sit

io
n

M
SE

Position Estimation Error on Test Set: CNN structure
 MSE: Adam
 MSE: O-Adam

0 250 500 750 1000 1250 1500 1750 2000
Epoches

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Po
sit
io
n
M
SE

Position Estimation Error on Training Set: CNN structure
 MSE: Adam
 MSE: O-Adam

Figure 19: Train and Test MSE for trail 2

optimism only offers minor advances during first 900 iterations, which could be easily submerged
below noise level; and after 900 iterations, the optimistic Adam start to increase its loss.

It can be seen from Fig. 18 that in this saddle point problem, the OAdam offers slightly smaller MSE
on the training dataset, but performs similar on the test set. However, the optimism lost its advantage
in the non-saddle point problem as demonstrated in Fig. 19. In this trail, the test set MSE for both
algorithms are still non-distinguishable, but the training MSE for Adam is better then OAdam.

5 Conclusion

Though optimistic methods appear to be promising, at the outset they suffer from some elementary
limitations. The major advantages as well as the drawbacks for every application is summarized as
follows.

Convex Optimization Problem In this robust regression problem, we do not see an obvious
improvement using optimistic algorithms. Further the introduction of more mid-points in generalized
extra-gradient method does not show improvement over vanilla methods. We also see slower
convergence in extra-gradient methods than projected subgradient method and Adam algorithms after
200 iterations.

Non-Convex Optimization Problem. We use image quality assessment as an example for testing
the performance when introducing optimism to training non-convex problem. The experimental
results show that the optimistic versions of two decent algorithms give better performances for both
big and small databases.

Saddle Point Objectives The experimental results does not guarantee a better performance of
optimism when applied to saddle point problems. When hyper-parameters are set to be the same, one
optimizer could perform better or worse than its optimistic version, and even when the optimistic
version performs better, this accuracy gain lost when the problem is modified back to the non-saddle
point problem. Though Theorem 4.3 from [10] proves convergence for optimistic methods, it has
two fundamental limitations. Firstly it is limited to coherent problems, but determining coherency is
in general non-trivial in nature. Secondly for problems with multiple saddle points it may converge
to a non-optimal saddle point which was observed in one of the applications discussed in this work.

15

Therefore applying OMD to any saddle point problem might not necessarily converge, in some cases
it may even converge to a non desirable solution. Lastly saddle point problems especially GANs are
highly sensitive to the data used for training as well as hyper-parameter variations. Thus convergence
of a model to the desired solution is not solely dependent on the choice of the optimization method.

6 Future Work

Even though the extragradient method has been used and proved convergence in many convex as
well as saddle point optimization problems, there is still no general result for the convergence rate,
especially for the generalized version. The selection of step size may also affect the performance.
More systematic and unified work could be done to better understand these algorithms in general
convex optimization problems.
As for non-convex optimization problems, we only show the results on deep models trained from
scratch. A common practice in deep learning is to start with a model pretrained on a large related
dataset and finetune its parameter for tasks that only has a small dataset available. Therefore, the
performances of optimistic versions of optimization algorithm when finetuning a deep network is
also worth-exploring.

References

[1] Duchi, J., E. Hazan, Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. Journal of Machine Learning Research, 12(Jul):2121–2159, 2011.

[2] Kingma, D. P., J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[3] Rakhlin, S., K. Sridharan. Optimization, learning, and games with predictable sequences. In
Advances in Neural Information Processing Systems, pages 3066–3074. 2013.

[4] Korpelevich, G. The extragradient method for finding saddle points and other problems.
Matecon, 12:747–756, 1976.

[5] Luo, Z.-Q., P. Tseng. Error bounds and convergence analysis of feasible descent methods: a
general approach. Annals of Operations Research, 46(1):157–178, 1993.

[6] Nguyen, T. P., E. Pauwels, E. Richard, et al. Extragradient method in optimization: Convergence
and complexity. Journal of Optimization Theory and Applications, 176(1):137–162, 2018.

[7] Mokhtari, A., A. Ozdaglar, S. Pattathil. A unified analysis of extra-gradient and optimistic
gradient methods for saddle point problems: Proximal point approach. arXiv preprint
arXiv:1901.08511, 2019.

[8] Ghadiyaram, D., A. C. Bovik. Massive online crowdsourced study of subjective and objective
picture quality. IEEE Transactions on Image Processing, 25(1):372–387, 2016.

[9] Lin, H., V. Hosu, D. Saupe. Koniq-10k: Towards an ecologically valid and large-scale iqa
database. arXiv preprint arXiv:1803.08489, 2018.

[10] Mertikopoulos, P., H. Zenati, B. Lecouat, et al. Mirror descent in saddle-point problems: Going
the extra (gradient) mile. arXiv preprint arXiv:1807.02629, 2018.

[11] Goodfellow, I., J. Pouget-Abadie, M. Mirza, et al. Generative adversarial nets. In Advances in
neural information processing systems, pages 2672–2680. 2014.

[12] Radford, A., L. Metz, S. Chintala. Unsupervised representation learning with deep convolutional
generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[13] Arjovsky, M., S. Chintala, L. Bottou. Wasserstein generative adversarial networks. In Interna-
tional Conference on Machine Learning, pages 214–223. 2017.

[14] Gulrajani, I., F. Ahmed, M. Arjovsky, et al. Improved training of wasserstein gans. In Advances
in Neural Information Processing Systems, pages 5767–5777. 2017.

[15] Metz, L., B. Poole, D. Pfau, et al. Unrolled generative adversarial networks. arXiv preprint
arXiv:1611.02163, 2016.

[16] Daskalakis, C., A. Ilyas, V. Syrgkanis, et al. Training gans with optimism. arXiv preprint
arXiv:1711.00141, 2017.

16

[17] Krizhevsky, A., G. Hinton. Learning multiple layers of features from tiny images. Tech. rep.,
Citeseer, 2009.

[18] Liu, Z., P. Luo, X. Wang, et al. Deep learning face attributes in the wild. In Proceedings of the
IEEE international conference on computer vision, pages 3730–3738. 2015.

[19] Salimans, T., I. Goodfellow, W. Zaremba, et al. Improved techniques for training gans. In
Advances in neural information processing systems, pages 2234–2242. 2016.

[20] Heusel, M., H. Ramsauer, T. Unterthiner, et al. Gans trained by a two time-scale update rule
converge to a local nash equilibrium. In Advances in Neural Information Processing Systems,
pages 6626–6637. 2017.

[21] Szegedy, C., V. Vanhoucke, S. Ioffe, et al. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 2818–2826. 2016.

[22] Fréchet, M. Sur la distance de deux lois de probabilité. In C. R. Acad. Sci. Paris, pages
244:689–692. 1957.

[23] Berthelot, D., T. Schumm, L. Metz. BEGAN: Boundary equilibrium generative adversarial
networks. arXiv preprint arXiv:1703.10717, 2017.

[24] Zhao, J., M. Mathieu, Y. LeCun. Energy-based generative adversarial network. arXiv preprint
arXiv:1609.03126, 2016.

A Optimistic Adam

Algorithm 1 Optimistic Adam

procedure OPTIMISTIC ADAM OPTIMIZER
Parameters: learning rate η, decay rates for moments β1, β2 ∈ [0, 1), loss function f , initial
parameters x0

for each iteration t ∈ 1, ..., T do
Compute stochastic gradient: ∇x,t = ∇xft(x)
First moment: mt = β1mt−1 + (1− β1)∇x,t
Second moment: vt = β2vt−1 + (1− β2)∇2

x,t
First moment correction: m̂t = mt

1−βt
1

Second moment correction: v̂t = vt
1−βt

2

Optimistic gradient descent: xt = xt−1 − 2η m̂t√
v̂t+ε

+ η ˆmt−1√
ˆvt−1+ε

Return xT

B DCGAN Architecture

Layers with corresponding output shapes are provided here for both Generator and Discriminator.
Relu and Batch normalization is applied to every layer except for the final layer. Hyperbolic tangent
non-linearity is applied to final layer of generator. Note that Generator and Discriminator are mirror
images of each other.

Generator

• Input = (batch size, 128) - Noise from a Normal distribution

• Fully Connected Layer = (batch size, 128, 4096)

• Reshape = (batch size, 256, 4, 4)

• Transposed Convolution Layer = (batch size, 128, 8, 8)

• Transposed Convolution Layer = (batch size, 64, 16, 16)

• Transposed Convolution Layer = (batch size, 3, 32, 32)

17

Discriminator

• Input = (batch size, 3, 32, 32)
• Convolution Layer = (batch size, 64, 16, 16)
• Convolution Layer = (batch size, 128, 8, 8)
• Convolution Layer = (batch size, 256, 4, 4)
• Reshape = (batch size, 4096)
• Fully Connected Layer = (batch size, 1)

C BEGAN Architecture

The BEGAN architecture is illustrated in Fig. 20. The variable n corresponds to the number of filters.
In case of CelebA dataset the input images were of dimension 64× 64 for which n was made equal
to 128, while for CIFAR-10 data n = 64 was used as the images were of dimension 32× 32.

Figure 20: Network architecture of generator and discriminator in BEGAN.

18

	Introduction
	Convex Optimization Problem
	Problem Formulation
	Extra Gradient Method in Convex Optimization and Its Generalization
	Experiments and Results
	Setup
	Results

	Non-Convex Optimization Problem
	Background
	Experiment Setup
	Results

	Saddle Point Objectives
	Saddle Point Problems: Experimental Results
	Indoor positioning task

	Conclusion
	Future Work
	Optimistic Adam
	DCGAN Architecture
	BEGAN Architecture

