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Abstract

We consider the problem of quality assessment (QA) of image stitching algorithms used to

generate panoramic images for virtual reality applications. Our contributions are two fold.

We design the Indian Institute of Science Stitched Image QA (ISIQA) database consisting of

264 stitched images obtained by employing multiple stitching algorithms on images captured

from 26 diverse scenes. The database has a wide perceptual quality spread and consists of

a variety of artifacts due to stitching such as blur, ghosting, color and geometric distortions.

We subjectively evaluate these images by acquiring 6600 human quality ratings by for these

images viewed on a virtual reality head mounted device. We then devise an objective QA

model called the Stitched Image Quality Evaluator (SIQE) using the statistics of steerable

pyramid decompositions. In particular, we propose a Gaussian mixture model to capture the

bivariate statistics of neighboring coefficients of steerable pyramid decompositions and show

this to be effective in modeling the increased spatial correlation due to ghosting artifacts. An

important characteristic of the proposed algorithm is that it requires no knowledge of the

stitching algorithm used to obtain the panorama and only needs individual images and stitched

image as input for predicting quality. We show through extensive experiments that our quality

model outpeforms the exisitng No-Reference and Full-Reference QA models and correlates very

well with subjective scores in the ISIQA database. The ISIQA database as well as the software

release of SIQE have been made available online for public use and evaluation purposes.
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Chapter 1

Introduction

Virtual Reality (VR) refers to technologies that enable the virtual presence of an individual

in a different environment. In recent days VR is gaining significant popularity due to its wide

applications ranging from education, motion pictures, games to medicine and healthcare. VR

aims to provide a realistic and immersive experience in virtual environments to the users through

wide field of view images or panoramic images and videos viewed on head mounted displays

(HMD). HMD devices like Google Cardboard, Oculus Rift etc. are increasingly becoming

popular and are widely getting adopted by mainstream media and general public. Also the

development of specialized camera rigs of multiple cameras such as Facebook Surround 360

[2], and handheld single cameras consisting of multiple lenses like Ricoh Theta S, have made it

simpler to capture, stitch and broadcast. Panoramic images are typically obtained by capturing

images with overlapping areas and stitching together the wide field of view image. Thus image

stitching forms an important aspect of generating panoramic or wide field of view images.

A large number of image stitching algorithms have been developed in literature [3, 4, 5, 6]

including several commercial algorithms like Autostitch [7] and Microsoft Image Composite

Editor [8]. Nevertheless, the quality assessment of panoramic images with respect to stitching

algorithms has been much less studied. Such assessment will help benchmark, compare and
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Stitching

Algorithm

Quality?

Constituent Images Distorted Stitched Image

Figure 1.1: Problem illustration

tune the performance of various stitching algorithms. We focus on the problem of subjective

and objective quality assessment (QA) of image stitching in the context of VR applications.

Fig. 1.1 illustrates the high level block diagram of the problem we are addressing in this work.

For the design of objective algorithms, we assume that the QA model has access to the stitched

image in addition to the individual images that are stitched.

1.1 Related Work

Objective QA algorithms can be broadly classified as Full Reference (FR) algorithms and No

Reference (NR) algorithms. FR algorithms are provided with a pristine unimpaired stimulus

along with the stimulus whose quality is to be measured as input [9, 10]. NR methods predict the

quality of the impaired stimulus without any information about the pristine stimulus [11, 12, 13].

Note that the problem setting we consider does not fall under the FR category due to the non-

availability of a true undistorted panorama. Further, the problem cannot be strictly categorized

under the NR setting as some information about the reference is available in the form of

individual images (or constituent images) that undergo stitching. Thus the challenge in the

QA of image stitching lies in how reference information from the individual images can be used

to reliably assess the quality of the stitched image. Further, distortions that arise due to image

stitching such as ghosting, geometric errors and color artifacts are very specific to panoramas
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and existing generic QA algorithms do not effectively account for these distortions.

Existing stitched image QA algorithms [14, 15, 16] mainly account for the presence of specific

artifacts like photometric and geometric distortions. In [15], the structural similarity index

(SSIM) of high frequency information of the stitched and unstitched images in overlapping

regions is used as a measure of geometric error. Quality indices proposed in [14, 16] only

address color correction and intensity consistencies. Cheung et al. [17] construct a database of

stitched images from virtual scenes and model geometric inconsistencies using optical flow field

energy. In [18], the gradient of luminance differences between the stiched and reference images

is used to measure geometric error. The frameworks proposed in [17, 18] differ from ours in the

availability of a reference stitched image. In [17], each camera view is used as a full reference of

the stitched view of its left and right adjacent images, which requires a careful arrangement of

cameras. Since every stitched image is obtained via a stitching algorithm, a reference stitched

image is generally not available in all situations.

Recently, a few QA algorithms for 360◦ images (omnidirectional images) have been proposed

to capture compression artifacts arising from JPEG, JPEG2000, HEVC etc. [19, 20, 21, 22,

23, 24]. In [19] a spherical-PSNR (S-PSNR) was proposed by calculating PSNR values bet-

ween corresponding pixels in the spherical domain. A craster parabolic projection based PSNR

(CPP-PSNR) was proposed by Zakharchenko et al. [20] as a quality measure. Sun et al. [21]

use a weighted spherical PSNR (WS-PSNR) to compare distorted images, where the weights

are computed based on pixel locations on the spherical surface. In [22, 23] the performance

of existing FR image QA (IQA) metrics are compared on a database of omnidirectional ima-

ges suffering from compression distortions. In [24] an adversarial learning approach has been

proposed to determine the quality of distorted images, where the generator and discriminator

networks are learned using a database of distorted images, their corresponding human opinion

scores as well as reference images. All of the above methods mainly address artifacts arising

from compression and do not explicitly model stitching induced distortions.
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1.2 Contributions

Our main contributions are in the design of a stitched image QA database and algorithms that

capture stitching induced distortions and provide quality scores that correlate well with human

judgments. We provide further details of our contributions as follows:

Subjective Quality Assessment

We design a dataset containing 264 panoramic images obtained using various stitching algo-

rithms from images captured from 26 diverse scenes. We conduct a large scale subjective study

to evaluate the images in the database by acquiring around 25 human opinion scores for each

image. The subjective study involves obtaining human ratings when images are viewed on a

HMD as applicable to virtual reality. The images in the dataset as well as their corresponding

human ratings are used to train and evaluate objective QA models.

Objective Quality Assessment

We design the Stitched Image Quality Evaluator (SIQE) by devising statistical features using

steerable pyramid decompositions. We propose a Gaussian mixture model to model the bivari-

ate statistics of pairwise neighbors of steerable pyramid decompositions and show this to be an

effective model. We then apply this model to capture the ghosting artifacts introduced due to

image stitching. We design our model independent of the knowledge of the stitching algorithm

that may have been used to stitch the images. We adopt this approach to enable our model

to be robust to image key point mismatches inherent in the stitching algorithm as well as the

lack of knowledge of the stitching algorithm itself. We evaluate our model on the database we

develop and show that the estimated quality correlates very well with the Mean Opinion Scores

(MOS) obtained from the subjective study.
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1.3 Organization

The remainder of this thesis is organized as follows. In Chapter 2 we describe the detailed

procedure employed for creation of the stitched image quality assessment database. In this

Chapter, we also describe the methods employed for processing the human opinion scores

obtained from the subjective study. In Chapter 3 we explain our proposed QA model, where we

discuss the motivation and design of features employed in our proposed framework. In Chapter

4 we discuss the extensive experiments we conduct to evaluate our proposed model and, we

report and analyze these experimental results. Finally the thesis is concluded in Chapter 5,

with discussion on some future directions of the problem.



Chapter 2

Subjective Quality Assessment

In this chapter we provide details about the subjective quality assessment of stitched images.

Firstly, we discuss the methods employed for creating the stitched image quality assessment

database. Secondly, we provide details of the subjective study and methods used for processing

the human opinion scores obtained from the subjective study. We next analyze the influence

of number of subjects on the mean opinion score obtained for each image. We also analyze

the response time of the subjects on the basis of various types of distortions present in the

database.

2.1 Database

We create the Indian Institute of Science (IISc) Stitched Image Quality Assessment (ISIQA)

database consisting of 264 stitched images obtained from 26 diverse scenes. Every scene consists

of multiple images with overlapping view points obtained through horizontal panning motion of

the camera. Images were captured using a Samsung Galaxy S7 Edge smartphone camera with

a resolution of 4032×2268 for every viewpoint image. During image capture, care was taken to

avoid object motion between successive images since the focus of this study is in evaluating the

performance of stitching algorithms for static scenes. Recent studies on saliency in VR have
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Input

Images
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SURF [29]
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Removal

RANSAC [30]

Projective
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Poisson [36, 37]

Final

Panorama

Figure 2.1: Image stitching pipeline with algorithms associated with each stage

Buildings Gardens Indoor Public Places Total

Number of scenes 9 8 3 6 26
Number of stitched images 96 71 34 63 264

Table 2.1: Number of images present across categories

revealed a strong equator bias persistent among the subjects [19, 25, 26, 27], where viewers are

more likely to observe content in equator adjacency rather than near the poles in a spherical

projection. Since we focus on evaluating images obtained through horizontal image stitching,

we ignore the top and bottom views in our study. Every scene consists of 4−5 images obtained

along multiple viewpoints resulting in stitched images with horizontal field of view lying in the

range 180◦ − 270◦ and having horizontal resolution around 8K − 10K (vertical resolution will

be around 2K since the top and bottom views are absent and vertical field of view in the range

90◦ − 120◦). The 26 scenes consist of a wide variety of scenes including buildings, gardens,

indoor and public places. Each set of overlapping viewpoint images corresponding to a scene is

stitched using different algorithms to create the database of stitched images. The distribution

of the stitched images present in each scene category is shown in Table 2.1.

Image stitching involves a series of operations from the constituent images with overlapping

fields of view to the stitched image. A typical stitching pipeline shown in Fig. 2.1 illustrates

the algorithms employed in each stage. By varying the choice of specific algorithms for each

stage as well as the parameter options for these individual algorithms, we create the database of
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stitched images having a wide perceptual quality spread. The effect of each stage present in the

stitching pipeline on the quality of the stitched image is discussed in the following subsections.

2.1.1 Feature Detection and Matching

The first step in stitching procedure is to align the individual images by identifying the corre-

sponding points in the overlapping regions. Keypoint detection algorithms such as SIFT [28],

SURF [29] etc. are some of the widely used methods to detect the corresponding points. We

observed that the quality of the final stitched image is not particularly sensitive to the choice

of keypoint detection algorithm. Therefore we employ SIFT for all the images in the ISIQA

database. Applying SIFT to each individual image results in keypoints over the entire image

as shown in Fig. 2.2. However we are only interested in points lying in the overlapping regi-

ons. Therefore points corresponding to two consecutive image pairs are subjected to feature

matching, where Euclidean distance between SIFT feature vectors are computed and only the

points having distance lesser than a predefined threshold are retained. The procedure of feature

detection and matching is illustrated on an example image pair in Fig. 2.2 and Fig. 2.3. It can

be observed from Fig. 2.3 that even after feature matching there might exist some points in the

Figure 2.2: Keypoint Detection Figure 2.3: Keypoint Matching

Figure 2.4: Outlier removal
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non-overlapping regions which are removed by an outlier rejection algorithms such as Random

Sample Consensus (RANSAC) [30]. The effect of outlier rejection is shown Fig. 2.4, where

after applying RANSAC the points only lie in the overlapping regions. The main contribution

of feature detection stage is in identifying corresponding points in the individual images. In the

case of inconsistencies associated in identifying the corresponding keypoints, it will show up in

the form of distortions in the subsequent stages of stitching.

2.1.2 Image warping

Warping refers to the transformation applied on image co-ordinates in order to align the overlap-

ping regions of the constituent images. Mathematically warping involves mapping co-ordinates

by a suitable function and resampling. Various warping functions have been proposed in the

literature for stitching, of which we only employ three of them in our database as we observed

that they significantly influenced the quality of the final stitched image. The three warping

functions are discussed below.

• Homography - Homography warp is one of the widely employed transformation for aligning

images. Homography is calculated by an algorithm known as Direct Linear Transforma-

tion (DLT), by using the matched points obtained from the feature detection stage. The

limitations associated with the above model is that it assumes that either the images

Figure 2.5: Illustration of stitching inconsistencies due to homography warp
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Figure 2.6: Ghosting artifacts due to homography

Figure 2.7: Warping using local homography

taken by the rotating camera is parallax free/purely rotational (no translation should

be present between two consecutive camera imaging positions) or imaging scene has to

be planar [3]. Deviation from the above assumptions results in stitching inconsistencies

and can manifest as ghosting artifacts. The above limitation is illustrated in Fig. 2.5

where the matching points are not perfectly overlapping due to violation of homography

conditions, thereby resulting in ghosting artifacts. Another example of ghosting artifacts

arising from applying homography is shown in Fig. 2.6.

• Local Homography - Moving DLT also known as local homography [5], was introduced to

overcome the limitations of homography. In MDLT, homography transform is computed

for every patch in the image instead of the entire image as is the case with homography.

The effect of using MDLT is illustrated in Fig. 2.7 where ghosting artifacts which were
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Figure 2.8: Distortions in non-overlapping regions due to local homography

Figure 2.9: Ghosting distortion in SPHP warp

observed in Fig. 2.6 have been eliminated. Drawbacks of local homography include the

distortions such as blur, geometric etc. introduced in the non-overlapping parts of the

stitched image as shown in Fig. 2.8.

• Shape preserving warp - In [6] a new warping method called shape preserving half pro-

jective (SPHP) warp is proposed by combining projective and similarity transformations.

SPHP in general produces more natural looking panoramas when compared to homo-

graphy and local homography, however some of the drawbacks associated with homo-

graphy such as ghosting artifacts are still observable in SPHP as shown in Fig. 2.9.

From the above discussion on warping functions it is evident that the type and amount of

distortions present in the final stitched image is dependent on the choice of the warping method
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employed. Therefore the choice of warping method directly influences the quality of the stitched

image.

2.1.3 Image Blending

Blending refers to the process of fusing multiple images to form a single composite image. The

main aim of blending is to provide a smooth transition between images with no visible seams.

Absence of suitable blending methods result in visible seams as observed in Fig. 2.10a where

the warped images are shown without any blending. An exposure compensation stage precedes

blending stage in the case of images having different exposure levels, and exposure correction

algorithms are employed to compensate for these difference in exposure levels. We observed that

the algorithms associated with exposure compensation stage [32, 14, 33] provide nearly similar

results. Hence in our database we use only [33] for exposure correction. Multiple algorithms

exist in the case of blending which are described below.

• Linear Blending - Linear blending or feathering employs a weighted averaging in the

overlapping regions [3], where the weights are spatially varying in nature with pixels near

the center of the image having higher weights than pixels near the edges. Feather blending

applied to an exposure corrected image is shown in Fig. 2.10b.

• Pyramid Blending - Pyramid or multiband blending is carried out in band-pass domain by

decomposing the image into a multiscale pyramid [34, 35]. The mask (valid pixel) image

associated with each individual image is converted into a Gaussian (lowpass) pyramid.

The masks are obtained by suitable seam cutting algorithms such as graphcut [31] etc.

These blurred and subsampled masks become the weights used to perform a feathered

blend of the band-pass images. Multiband blending is shown in Fig. 2.10c where the

seams are visible (seams are relatively smooth due to blending) due to absence of exposure

correction.
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(a) No Blending (b) Feathering with exposure compensation

(c) Multiband (d) Poisson

Figure 2.10: Illustration of various blending methods

• Gradient domain blending - An alternative to multiband image blending is to perform the

operations in the gradient domain. In [36, 37] blending is done by solving an optimization

function resulting in a Poisson equation. Poisson blending is shown in Fig. 2.10d where

the seams (exposure correction is absent) are comparatively less visible when compared

to multiband blending shown in Fig. 2.10c.

The above discussion on blending methods demonstrates the sensitivity of the quality of

stitched image with respect to the choice of blending algorithms. Summarizing the above

discussions, we showed that the choice of algorithms associated with warping and blending

stage significantly influence the quality of stitched image. In particular, we only vary algorithms

associated with the warping stage using [5] and [6], and the blending stage using [3, 34, 36, 35]

and [37]. In addition to the above, a commercially available stitching algorithm [8] was also used

to generate stitched images in the database. As a result of stitching we observe that ghosting,

blur, color and geometric distortion are some of the prominently observed impairments in

stitched images as described below.
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(a) Ghosting (b) Geometric Distortion

(c) Blur (d) Color Distortion

Figure 2.11: Images illustrating various distortions due to stitching. The images shown above
are cropped versions of the images present in the database.

• Ghosting and blur - occur due to inaccurate matching of feature points in the overlapping

regions of constituent images resulting in stitched image with misalignments.

• Color distortion - occurs when constituent images have different exposure levels.

• Geometric distortion - occurs due to improper blending of multiple images (in the blending

stage of the stitching process).

Fig. 2.11 illustrates the above types of distortions observed in stitched images.
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2.2 Subjective Test Methodology

We employ the Single-Stimulus Continuous Quality Evaluation (SSCQE) [38] procedure to

obtain human quality ratings for images in the ISIQA database. The images were viewed

by the subjects on a Samsung Gear Virtual Reality HMD and rated on a scale of 0 − 100,

100 representing best quality and 0 corresponding to images suffering from severe distortions.

In order to view the images on the HMD, the images were projected using equirectangular

projection spanning the entire 360◦ with a 2 : 1 aspect ratio. Since the individual input images

(or constituent images) in this dataset do not contain top and bottom views, black regions

were augmented for areas corresponding to top, bottom and certain parts of horizontal view

(as horizontal field of view is not completely 360◦) such that the final aspect ratio was 2 : 1.

A total of 35 subjects were recruited for the study mostly from the student community of

IISc. Each subject viewed a subset of 192 out of the 264 images from the database so that each

image received a minimum of 25 user ratings. The 192 images were divided into a three viewing

sessions consisting of 64 images each and the subjects took no more than 30 minutes to complete

each viewing session. Images were shown in a randomized order with no two successive images

belonging to the same scene.

Each subject was individually explained the goal of the experiment and a short training

session was conducted to familiarize the rating procedure. The subjects were instructed to

provide ratings based on the quality perceived rather than the aesthetics of the image. During

the training session 5 images were shown, the first being a calibration image used to adjust

the focus of the lens present in the HMD and the rest four images spanning the same range of

quality as the test images, to provide the subject an idea of the quality of images present in

the study. The training images are not part of the ISIQA database and their scores were not

considered for evaluation. The training set of images were the same for all participants. The

subjects were provided with a swivel chair to facilitate 360◦ viewing capability. Also there was

no time constraint on viewing each image, the subjects were allowed to view them as long as
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they wished. The subjects were allowed to pause in between their session if they experienced

uneasiness or felt fatigued. To reduce the subjective fatigue, a minimum gap of 24 hours was

provided between successive sessions. The subjects orally reported the ratings after viewing

every image which were recorded by an individual conducting the study.

2.3 Processing of Subjective Scores

Let mijk denote the score provided by subject i to image j in session k = {1, 2, 3}. Since all

images in the ISIQA database are not rated by every subject, let δ(i, j) be an indicator function

such that

δ(i, j) =


1 if subject i rated image j

0 otherwise.

(2.1)

To normalize the scores received across multiple sessions of each subject, we calculate the

Z-scores per session [39] as

µik =
1

Nik

Nik∑
j=1

mijk (2.2)

σik =

√√√√ 1

Nik − 1

Nik∑
j=1

(mijk − µik)2 (2.3)

zijk =
mijk − µik

σik
, (2.4)

where Nik is the number of images seen by subject i in session k. The Z-scores from all

sessions are concatenated to form the matrix {zij} denoting the Z-score assigned by subject i

to image j with j = {1, 2, 3 . . . 264} with the entries of {zij} being empty at locations (i, j)

where δ(i, j) = 0. These Z-scores are then used in the subject rejection procedure detailed in

the ITU-R BT 500.11 recommendation [38] to discard scores from unreliable subjects. In our
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Figure 2.12: Histogram of MOS

study two subjects were rejected. Assuming zij to have a standard normal distribution, 99% of

the Z-scores lie in [−3, 3]. A linear rescaling was used to map scores to the range [0, 100] as

zij =
100(zij + 3)

6
. (2.5)

Finally the Mean Opinion Score (MOS) of each image was calculated by averaging the ratings

received for that image as

MOSj =
1

Nj

N∑
i=1

zijδ(i, j), (2.6)

where Nj =
∑N

i=1 δ(i, j) and N = 264. The MOS were found to lie in the range [20.6, 72.5] and

the mean of standard deviations of the rescaled Z-scores obtained from all subjects across all

images is 9.7. The histogram of MOS scores is shown in Fig. 2.12 indicating a reasonably wide

distribution of MOS values.
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2.4 Anchor Images

Note that in our study, every image was not rated by all subjects and a unique subset of images

were viewed by each subject. While this procedure of only having a unique subset of images

viewed by each subject has been used in various studies [40, 41, 42], we did not find a discussion

in literature on the impact on MOS of having a different subset of subjects view each image

as opposed to the entire population. In order to analyze this, we choose a subset of 12 images

from the ISIQA database referred to as anchor images. These anchor images were present in

the viewing set for all subjects (in 192 images that were scored by the subjects, 12 images

were viewed by all subjects and received 35 ratings while the other images received 25 ratings).

To analyze the impact of the number of subjects on MOS, we randomly sampled subsets of

the subject scores and recalculated MOS on these reduced subsets for these images as shown

in Fig. 2.13. We see that these computed MOS values remain relatively constant across the

number of subjects although the standard deviation tends to increase for number of subjects

lesser than 22. The confidence intervals were calculated based on the variation of MOS over
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Figure 2.13: MOS of anchor images plotted with number of subjects along with 95% confidence
intervals
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25 trials. While Fig. 2.13 shows the results of 4 anchor images, similar results are observed for

other anchor images as well.

2.5 Analysis of Color Distorted Images

As explained earlier, stitched images suffer from a variety of distortions. We now analyze the

sensitivity of humans to color distortions in particular. The analysis of images suffering from

color distortions reveals an interesting observation. In a majority of the scenes, the scores

received for color distorted images are relatively close to the score received for images suffering

from little or no distortion. This observation is shown in Fig. 2.14 where two color distorted

images along with their MOS are compared with images having no artifacts. The relative

closeness of the MOS potentially indicates that color distortion appears to be less annoying,

particularly when viewed on a HMD. We believe that since the images were rated by viewing

them on a HMD which provides approximately 90◦ field of view, there are instances where color

distortion might not appear in the purported field of view resulting in higher ratings even in

the presence of such impairments.

(a) MOS = 61.7624 (b) MOS = 61.6771

(c) MOS = 59.7492 (d) MOS = 59.954

Figure 2.14: Comparison of MOS of color distorted images (left column) with images having
no artifacts (right column)
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2.6 Analysis of Subjective Response Times

While conducting the subjective study, in addition to the subjective ratings, we also collected

the time taken by each subject to rate every image. In Fig. 2.15 the average response time for

various distortions is shown. It can be seen that images with ghosting artifacts require least

amount of time for rating as they are easily recognized, while geometry and color distorted

images require relatively longer time as they require careful observation for their identification.

As expected, the longest response time corresponded to images with no distortions as they

required more scrutiny to make sure the absence of any impairments. Note that the categori-

zation of images into different distortion types has been done approximately by the authors.

Often, these distortions occur concurrently, in which case the most dominant distortion type

has been assigned for the purposes of this experiment.
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Figure 2.15: Average response time for various distortions
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Stitched Image Quality Evaluator

We now present an objective algorithm to automatically evaluate the quality of stitched images.

The framework of our proposed method is shown in Fig. 3.1. We devise two sets of features

to characterize the distortions and assess the quality of the stitched image. These features are

designed to capture deviations in the statistics of images due to the presence of artifacts such

as ghosting and blur. The first set of features captures structural changes (addition or deletion

of edges and blur) occurring due to distortions. The second set of features extracts variations

observed in spatial correlation due to the presence of ghosting in the stitched image. Feature

extraction is carried out at a patch level, and a weighted average of the patch level features

is computed to obtain image level features for both the stitched as well as constituent images.

Feature differences are then fed to a support vector regressor for quality prediction. We describe

further details of the framework in the following sections.

3.1 Bandpass Analysis of Image Stitching

As discussed earlier, ghosting is one of the prominent distortions that occur due to image

stitching. Ghosting occurs when overlapping regions in the constituent images are not aligned

perfectly. Fig. 3.2 illustrates the warping stage of the stitching process using homography
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Figure 3.1: High Level Overview of SIQE Framework

transform. Let X denote the set of all coordinates representing the overlapping region in I1.

Ghosting is observed when I1(x) 6= I2(Hx) for any x ∈ X, where H denotes homography

transformation between I1 and I2. Mathematically ghosting can be represented as

I(x) = (1− α(x))I1(x) + α(x)I2(Hx), (3.1)

where α(x) ∈ (0, 1) denotes the weighting value at location x. Ghosting artifacts are characte-

rized by the presence of additional edges as well as the increased spatial correlation due to the

replication of certain regions by means of shifting and adding pixels from the original image (the
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I1 I2

I

Figure 3.2: Illustration of homography warp. Red boxes indicate overlapping regions

H

shift can be non-linear with each pixel having different shifts) as shown in Equation 3.1. Thus

features that capture ghosting need to detect the presence of additional edges as well as the

amount of increased correlation between neighboring pixels for efficient quality prediction. In

addition to ghosting, geometric distortions such as shape deformations also manifest themselves

in the form of structural distortions in the stitched image. The quality features we design need

to be sensitive to such distortions.

We notice that structural artifacts due to ghosting and geometric distortions primarily occur

at specific orientations and these are not isotropic. Thus we subject the images to multi-scale,

multi-orientation decompositions using steerable pyramids [43] to capture such distortions.

Steerable pyramids have been used in multiple image QA algorithms effectively [44, 11, 45]. The

significance of orientation selectivity is illustrated in Fig. 3.3, where the presence of additional

edges due to ghosting in Fig. 3.3a is prominently visible in the orientation decomposition along

150◦ in Fig. 3.3c and not so much in the decomposition along 60◦ in Fig. 3.3b. Similarly, the

geometric errors in Fig. 3.3d are more clearly visible in Fig. 3.3e when compared to Fig. 3.3f.

Given an image whose quality is to be assessed, we partition the image into N ×N patches

and subject each patch to a steerable pyramid decomposition across 2 scales and 6 orientations.
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(a) Ghosted Patch (b) 60◦ (c) 150◦

(d) Geometric Distorted
Patch

(e) 30◦ (f) 90◦

Figure 3.3: Illustration of orientation selectivity

The resulting decomposition results in 12 subbands denoted by sθα, where α ∈ {1, 2} represents

the scale index and θ ∈ {0◦, 30◦, 60◦, 90◦, 120◦, 150◦} represents the orientation. We now extract

features in each of the resulting subbands as described in the subsections below.

3.2 Marginal Statistics Model with Divisive Normaliza-

tion

Ghosting artifacts as well as geometric distortion are associated with the presence of structural

deformations that can manifest as addition/deletion of edges when compared to the original

undistorted patch. We propose to employ a marginal statistics model of divisively normalized

subband coefficients to capture the quantum of additional edges observed due to distortions.
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Figure 3.5: Comparison of marginal statis-
tics in presence of geometric distortion

Divisive normalization performs the function of contrast gain control and also reduces the sta-

tistical dependencies between neighboring coefficients. In the past [44, 11, 45] have successfully

used divisive normalization for quality prediction in the presence of various distortions such as

blur, noise and compression artifacts.

Given a subband coefficient y, a P × P neighborhood with y at the center is constructed

to obtain vector Y . We implement divisive normalization as discussed in [11], where divisive
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normalization is defined as ŷ = y/p. Here ŷ represents the normalized coefficient with p being

the normalizing factor, calculated as p =
√
Y TC−1U Y/N [46], where CU is the covariance of

the neighborhood for the given subband and N representing the number of neighbors. The

value of p is obtained at every location in each subband to obtain a set of divisively normalized

coefficients denoted by dθα, where α ∈ {1, 2} and θ ∈ {0◦, 30◦, 60◦, 90◦, 120◦, 150◦}.

Divisive normalization helps in capturing orientation distortions where statistics of unnor-

malized coefficients fail. It plays a key role in determining the extent of additional edges present

due to distortions. Intuitively p can be considered as a factor dependent on local variance, the-

refore the values of p in regions containing edges tend to be higher than the regions with no

edges. The presence of additional edges due to distortions results in more number of locations

having higher p values. This leads to a large number of divisive normalized coefficients having

smaller values as ŷ = y/p, and a distribution with higher peak value at zero than that of the

reference. The effect of divisive normalization on the distribution of subbands is illustrated in

Fig. 3.4e where subbands of original and distorted patches along θ = 150◦ are compared. The

new edges due to ghosting that are prominently visible in s150
◦

1 (Fig. 3.4d), lead to a change in

the shape of distributions P (d150
◦

1 (x, y)) for the reference and distorted as shown in Fig. 3.4e.

We also observe deviations in the statistics of divisively normalized coefficients in images with

geometric distortions due to the presence of additional edges as illustrated in Fig. 3.5 where

the distribution P (d30
◦

1 (x, y)) of the original and distorted are compared (Fig. 3.5e). Divisive

normalization also captures blur as previously shown by various QA indices [11, 45].

The normalized coefficients dθα are statistically modeled using a generalized Gaussian distri-

bution (GGD), where the pdf of a GGD with zero mean is given by:

f(x; γ, σ2) =
γ

2βΓ(1/γ)
exp

(
−
( |x|
β

)γ)
(3.2)

β = σ

√
Γ(1/γ)

Γ(3/γ)
, (3.3)
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and Γ(.) is the gamma function

Γ(z) =

∫ ∞
0

tz−1e−t dt. (3.4)

The parameter γ controls the shape of the distribution and σ2 controls the variance. The

parameters of GGD(γ, σ2) are estimated using the moment matching technique proposed in

[47]. The shape parameters1 of the fitted model represent the features for a given patch. The

above procedure is repeated for all patches and features are weighted averaged (patch weighting

is discussed in Sec. 3.4) resulting in a 12 dimensional (6 orientations × 2 scales) feature vector

which we denote as f s1−12, f
c
1−12 for the stitched and constituent images respectively.

3.3 Bivariate Model

Ghosting artifacts are also associated with an increase in spatial correlation (or decrease in

variance in bandpass domain, a proof for decrease in variance in case of ghosting under some

assumptions is provided in Appendix A) which we capture by studying the bivariate statis-

tics of neighboring bandpass coefficients. Note that divisive normalization reduces statistical

dependencies between adjacent coefficients [46, 48], while we wish to capture the correlation

introduced in the adjacent coefficients due to ghosting. As a result, we focus on modeling

the bivariate statistics of the unnormalized coefficients. In particular, we obtain the biva-

riate statistics by considering immediate neighboring subband coefficients of sθα denoted by

P (sθα(x, y), sθα(x+ 1, y)) and P (sθα(x, y), sθα(x, y+ 1)) for horizontal/vertical neighbors respecti-

vely. Before we present our model for the bivariate statistics, we try to understand its relevance

in capturing ghosting artifacts. In Fig. 3.6a and 3.6b, we note the remarkable difference in the

bivariate statistics of original and ghosted patches. To further understand this, we proceed by

1The other parameters of GGD did not contribute for higher quality prediction. Hence only shape parameters
were retained.
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(a) Joint Histogram (Original Patch) (b) Joint Histogram (Ghosted Patch)
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Figure 3.6: Joint and conditional statistics in presence of ghosting. The above histograms are
plotted for s60

◦
1 for patches shown in Fig. 3.4

analyzing the conditional statistics P (sθα(x+ 1, y)/sθα(x, y) ∈ (−δ, δ)) (δ is a small positive con-

stant close to 0, in our experiments we use δ = 0.0125) as shown in Fig. 3.6c. The conditional

histograms in Fig. 3.6c reveal that in the case of ghosting, when the neighboring coefficient

is close to zero (i.e. sθα(x, y) ∈ (−δ, δ)), the probability of the coefficient under consideration

being close to zero is significantly high when compared to that of the original patch. Note the
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large difference in peak values illustrated in Fig. 3.6c between the conditional distributions

of the original and distorted. On the other hand, the marginal distributions of the original

and ghosted patches are relatively closer to each other indicating the stronger nature of bi-

variate statistics in capturing increased correlation. Thus modeling the bivariate statistics of

neighboring coefficient can help capture the correlation introduced due to ghosting.

Bivariate statistical models have recently gained attention in the modeling of natural scene

statistics [49], where divisively normalized coefficients have been modeled using a bivariate

Generalized Gaussian distribution (BGGD). Further, these have been used in blind QA in [50].

Another competing model to fit bivariate distributions is the Gaussian Scale Mixture (GSM)

model [46]. A random vector Y is a GSM if Y ≡ zU where ≡ denotes equality in distribution,

U is a zero-mean Gaussian random vector, z is a scalar random variable; and U and z are

independent. While a few models for the scalar random variable have been explored for natural

scenes [46], we observe that employing simple priors on z such as Jeffrey’s prior [51] does not

fit the empirical distribution of original and distorted patches well.

We model the bivariate joint distribution using a bivariate Gaussian Mixture Model (GMM).

While univariate GMMs have been used to model wavelet coefficients in denoising applications

[52, 53], their application in QA has been limited. Let sθα(x, y) = a, sθα(x + 1, y) = b, then the

probability density function (pdf) for a GMM f(a, b) is given by

f(a, b) =
M∑
i=1

ωiN(0,Σi), (3.5)

where ωi is the weighting parameter with
∑M

i=1 ωi = 1 and N(0,Σi) is a zero mean bivariate

normal distribution with covariance Σi. We use zero mean normal distributions in the mixture

since subband coefficients sθα are zero mean. The parameters ωi and Σi are calculated through

maximum likelihood (ML) estimation via Expectation Maximization (EM) algorithm [54]. The
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Feature ID Feature Description Computation Procedure

fs
1−12, f

c
1−12 Shape parameters of subband coefficients Fitting a GGD to subband coefficients

fs
13−24, f

c
13−24 Eigen values of bivariate distribution Fitting a bivariate GMM to horizontally

obtained from horizontal neighbors adjacent subband coefficients
fs
25−36, f

c
25−36 Eigen values of bivariate distribution Fitting a bivariate GMM to vertically

obtained from vertical neighbors adjacent subband coefficients

Table 3.1: Summary of extracted features

covariance C for the pair of wavelet coefficients is given by

C =
M∑
i=1

ωiΣi. (3.6)

C is computed for each patch and the eigen values of C are obtained as features. For each

subband, a bivariate GMM with M = 4 is employed for horizontal as well as vertical neighbors.

Since C has dimensions 2×2, 2 eigen values are obtained for each subband. Weighted averaging

is carried across all patches (patch weighting is discussed in Sec. 3.4) to obtain a 24 dimensional

(6 orientations × 2 eigen values ×2 horizontal and vertical neighbors2) feature vector which

we denote as fp13−36, f
c
13−36 for the stitched and constituent images respectively. The extracted

features are summarized in Table 3.1.

3.4 Patch Weighting

We observe that ghosting, blur and geometric artifacts are not perceived when patches are

smooth (e.g. sky) and majorly occur in textured regions. Therefore while combining patch

level feature vectors to obtain feature vectors at an image level, we weight the textured patches

more than smooth regions. We employ a simple texture estimation algorithm based on the Gray

Level Co-occurrence Matrix (GLCM) [55]. We use the energy measure of GLCM to quantify

the amount of texture present. Energy values of GLCM lie in the range [0, 1], with constant

2We only employ features from first scale as we observed that including features from second scale did not
result in higher quality prediction.
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(a) e = 0.957 (b) e = 0.459

(c) e = 0.354 (d) e = 0.106

Figure 3.7: Illustration of GLCM
energy values for patches with varying
amounts of texture
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Figure 3.8: Effect of σ on function g

images having energy value equal to 1. This is illustrated in Fig. 3.7 where energy values are

represented by e. Smooth patch shown in Fig. 3.7a has energy value closer to 1 while textured

patch in Fig. 3.7d has value closer to 0. Since we require larger weights for textured patches,

we compute the weights as w = 1− e. Further, we apply a non-linearity on the weight w given

by

g(w) = 1− exp

(
−
(w
σ

)2)
, (3.7)

where σ parameter controls the point of saturation for the non-linear function g. The above

non-linearity provides a saturation behavior where all patches above a particular amount of

texture achieve roughly equal weights. The effect of parameter σ is shown in Fig. 3.8 where

values of function g is plotted for different σ values. σ values very close to zero result in equal

weights for almost all patches (including smooth patches) while sigma values away from zero

approach linear variation, indicating little or no effect of the non-linearity. In our model we use

σ = 0.1.
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3.5 Prediction

Given a database of distorted stitched images and corresponding human opinion scores, we

obtain the difference of features extracted from the stitched image and those from the corre-

sponding to constituent images, f1−36 = f c1−36 − f s1−36, and a mapping is learned from feature

space to quality scores by means of a regression model. Our proposed framework is generic

enough to be employed with any regressor. In our implementation we use a Support Vector

Regressor (SVR) [56] as the SVR has been successfully used in various quality assessment pro-

blems [11, 12, 57, 58, 59]. We use the LIBSVM implementation [60] of a radial basis function

(RBF) kernel SVR to train and test our models.
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Experiments and Results

In this chapter we report the results of various experiments we perform in order to evaluate

the performance of SIQE. Firstly, we compare the quality of fits of BGGD and GMM in mo-

deling bivariate distributions. Secondly, we assess the performance of SIQE by examining its

correlation with human judgments and comparing with existing algorithms. We next analyze

the significance of each conceptual feature present in SIQE framework. We also report the time

complexity associated with SIQE.

4.1 Comparison of Models for Bivariate Distribution

We now evaluate the quality of fit of our bivariate GMM for adjacent subband coefficients on

both original and stitched image patches of size 100 × 100. We compare our model with the

recently developed BGGD model [49, 61] for bivariate statistics of subband decompositions.

In Table 4.1, we evaluate the quality of GMM and BGGD fits with respect to the empirical

bivariate distribution using the L1-norm error and Kullback Liebler (KL) divergence for patches

from the original constituent images. We employ the procedure detailed in [61] for estimating

BGGD parameters. The L1-norm error and KL divergence are calculated between empirical and

fitted histograms for every patch and the mean over all patches is reported. The values reported
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(a) Original Image (b) Ghosted Image

Figure 4.1: Ghosting example

(a) Histogram (Pristine Patch)
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(b) GMM fit (KL Divergence -
0.1477,

L1 error - 26.34× 10−6)
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(c) BGGD fit (KL Divergence -
0.2167,

L1 error - 32.41× 10−6)

Figure 4.2: 2D illustration of probability distributions for GMM and BGGD fits of undistorted
patch. The above distributions represent subband s0

◦
1 for patch shown in Fig. 4.1a

(a) Histogram (Distorted Patch)
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(b) GMM fit (KL Divergence -
0.1547,

L1 error - 34.33× 10−6)
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(c) BGGD fit (KL Divergence -
0.24,

L1 error - 46.13× 10−6)

Figure 4.3: 2D illustration of probability density functions for GMM and BGGD fits of ghosted
patch. The above distributions represent subband s120

◦
1 for ghosted patch shown in Fig. 4.1b
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Subbands
L1 norm error (10−6) KL Divergence
GMM BGGD GMM BGGD

s0
◦

1 33.3291 34.8282 0.1715 0.2034

s30
◦

1 33.4749 34.9788 0.1581 0.1842

s60
◦

1 29.0116 30.5941 0.1856 0.2026

s90
◦

1 24.6289 27.0378 0.2069 0.2205

s120
◦

1 29.1184 30.6145 0.1858 0.2025

s150
◦

1 33.4337 34.7679 0.1582 0.1850

Table 4.1: Comparison of GMM and BGGD
fits for pristine patches for horizontal neig-
hbors

Subbands
L1 norm error (10−6) KL Divergence
GMM BGGD GMM BGGD

s0
◦

1 38.9041 40.6054 0.2305 0.2413

s30
◦

1 39.3184 41.4931 0.2004 0.2161

s60
◦

1 33.6191 37.6948 0.2132 0.2263

s90
◦

1 27.7381 32.4613 0.2180 0.2455

s120
◦

1 33.8411 35.7571 0.2107 0.2242

s150
◦

1 39.4030 42.0467 0.1991 0.2150

Table 4.2: Comparison of GMM and BGGD
fits for distorted patches for horizontal neig-
hbors

in Table 4.1 correspond to distributions of horizontal neighbors and represent the mean of all

the patches obtained from the constituent images of 26 scenes present in the ISIQA database. It

can be inferred from Table 4.1 that GMM fits across all subbands are superior to corresponding

BGGD fits. The same is observed in Fig. 4.2 where we see that the visual illustration using

contour plots of the GMM fits are closer to the empirical statistics when compared to the BGGD

fits. Similar observations hold true for distorted patches in the stitched images, as shown in

Table 4.2 and Fig. 4.3. The values reported in Table 4.2 are obtained from patches of 26 images

suffering from ghosting artifacts present in the ISIQA database and correspond to distributions

of horizontal neighbors. Similar observations were made when distributions involving vertical

neighbors were considered for both pristine as well as distorted images. Due to the superior

modeling capability of GMM for both undistorted as well as ghosted images, we use GMM in

our SIQE framework. We also observe that the time taken to estimate BGGD parameters is

significantly high when compared to that of GMM, prohibiting its usage in our framework.

4.2 Correlation With Human Judgments

Before analyzing the performance of SIQE, we provide further details of its implementation. The

patch size is fixed to 100× 100. For patch weighting, a 13× 13 GLCM is constructed for every

patch of quantized image as explained in Section 3.4 [55]. This choice of quantization levels
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SROCC LCC

BRISQUE (trained on ISIQA) 0.6225 0.5954
NIQE 0.1524 0.1051

DIIVINE (trained on ISIQA) 0.5683 0.5880
SIQE 0.8318 0.8395

Table 4.3: Median values of SROCC and LCC for 1000 iterations of randomly chosen train and
test sets (subjective MOS vs predicted MOS)

was determined by experimentation on the training set. We also note that the performance is

not very sensitive to the exact choice of the number of levels.

In order to train SIQE, we divide the ISIQA database into two randomly chosen subsets -

80% training and 20% testing - ensuring that there exists no overlap of scenes between train

and test content. This is carried out to ensure that the reported results are not dependent on

features extracted from known scene content. Specifically, each training set consists of images

from 21 scenes while the testing set contains the remaining 5 scenes. Further we repeat this

random train-test split over 1000 iterations and report the median performance. The Spear-

man’s rank order correlation coefficient (SROCC) and Pearson’s linear correlation coefficient

(LCC) between between the predicted quality scores from SIQE and the subjective MOS are

used to assess the performance of SIQE. Before computing LCC, the scores predicted from the

objective algorithm were passed through a five parameter logistic non-linearity described in [40]

as

Quality(x) = β1logistic(β2, (x− β3)) + β4x+ β5 (4.1)

logistic(τ, x) =
1

2
− 1

1 + exp (τ, x)
. (4.2)

We compare the performance of SIQE against existing NR IQA indices such as DIIVINE [11],

BRISQUE [12] and NIQE [13] in Table 4.3. We report performances of BRISQUE and DIIVINE

features when trained on the ISIQA database. We see from Table 4.3 that SIQE significantly

outperforms the NR-IQA methods owing to the design of features that capture distortions
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SROCC STD LCC STD

BRISQUE (trained on ISIQA) 0.0828 0.0747
NIQE 0.1887 0.1753

DIIVINE (trained on ISIQA) 0.1398 0.1314
SIQE 0.0591 0.0519

Table 4.4: Standard deviation of SROCC and LCC values for 1000 iterations of randomly
chosen train and test sets

BRISQUE NIQE DIIVINE SIQE
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.4: Comparison of median SROCC distribution across multiple QA algorithms

arising from stitching and also the use of reference information in the form of constituent

images. Fig. 4.4 shows spreads of SROCC values for each algorithm over 1000 iterations.

The plot indicates that SIQE has a much better confidence interval when compared to other

methods underlining the robustness of the algorithm. The smaller standard deviation values

of correlation coefficients for SIQE in Table 4.4 also imply ruggedness of the features used in

SIQE. Note that since multiple distortions due to stitching occur concurrently, we only present

results on the entire dataset and a fine grained analysis on individual distortion types appears

difficult to perform.

We also compare with the performance of FR IQA indices proposed in [14] and [15] in
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SROCC LCC

Xu [14] (PSNR) 0.1795 0.2341
Xu [14] (SSIM) 0.3383 0.4077

Qureshi [15] 0.3238 0.3627
SIQE 0.7848 0.8032

Table 4.5: Comparison of Median values of SROCC and LCC with full reference QA algorithms
on a subset of 238 images in the ISIQA database

Table 4.5. Xu et al. [14] use PSNR for color similarity and SSIM for structural similarity,

whereas Qureshi et al. [15] use SSIM along high pass components for quantifying the quality

of stitched images. Note that FR IQA indices are only employed in the overlapping regions

and they require knowledge of stitching algorithm for establishing pointwise correspondences.

However commercially available stitching algorithms such as [8], do not provide point wise

correspondences between the constituent and stitched images, which renders the application of

FR IQA indices infeasible. Therefore we report the performances of [14] and [15] on a subset

of the ISIQA database which does not include stitched images obtained using [8]. It can be

observed from the Table 4.5 that the performance of SIQE is superior when compared with

FR-IQA indices as well.

4.3 Significance of Each Conceptual Feature

To study the effect of each conceptual feature present in SIQE framework, each feature is tested

in isolation for quality prediction and the correlation values are reported in Table 4.6. It can

be inferred from the table that while the marginal model individually provides a slightly higher

performance than the bivariate model, their performance greatly improves when employed

together. We also conduct an experiment to study the benefit of constituent images where

features from constituent images (f c1−36) are omitted and only features from the stitched image

(f s1−36) are used to train the regressor. The drop in performance emphasizes the necessity of

reference information in constituent images for efficient quality prediction. Employing only
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stitched image features f s for training is in effect an NR-IQA approach. Comparing with

the performance of NR-IQA metrics listed in Table 4.3 indicates that features of SIQE when

employed under an NR framework still outperform the existing NR-IQA methods. Table 4.3

also depicts the consequence of patch weighting where a drop in performance is observed when

all patches are equally weighted.

Feature SROCC LCC

Marginal statistics model (f1−12) 0.7825 0.7853
Bivariate model (f13−36) 0.7085 0.7157

Features from stitched image (fs
1−36) 0.6650 0.6929

(when constituent image features are omitted)
SIQE (fs

1−36 and f c
1−36) 0.8318 0.8395

SIQE (without patch weighting) 0.8041 0.8161

Table 4.6: Each conceptual feature in isolation of other features, median values of SROCC and
LCC for 1000 iterations of randomly chosen train and test sets

4.4 Application of Univariate GMM for capturing cor-

relation

In Sec 3.3 we proposed a bivariate GMM for capturing increased correlation arising due to

ghosting. We also illustrated in Fig. 3.6c the large difference in peak values of conditional

distribution compared to marginal distribution of unnormalized coefficients for ghosted patches.

Here we perform an experiment where a univariate GMM is used in place of the bivariate GMM

and the results are reported in Table 4.7. Let f cu and f su represent the features obtained from

univariate GMM for constituent and stitched images respectively. Since a univariate model

is used, the variance is single dimensional resulting in a 12 dimensional (6 orientations ×2

horizontal and vertical neighbors) feature vector f cu13−24, f
su
13−24. These features are concatenated

with features from marginal statistics (f cu1−12 = f c1−12 and f su1−12 = f s1−12) and subtracted to

obtain fu1−24 = f cu1−24−f su1−24. The values in the Table 4.7 indicate that bivariate statistics provide
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Feature SROCC LCC

Univariate model (fu
13−24) 0.5773 0.6208

Bivariate model (f13−36) 0.7085 0.7157
Univariate SIQE (fu

1−24) 0.8089 0.8163
SIQE (f1−36) 0.8318 0.8395

Table 4.7: Performance comparison using univariate GMM, median values of SROCC and LCC
for 1000 iterations of randomly chosen train and test sets

superior performance in both scenarios, when used in conjunction with marginal statistics as

well as when used individually. These results reinforce our claim that bivariate modeling is

stronger than univariate for capturing stitching induced distortions.

4.5 Effect of Quantization Levels in Patch Weighting

GLCM based patch weighting discussed in Sec. 3.4 is dependent on the number of quantization

levels used in constructing GLCM. The performance variation for changes in number of quanti-

zation levels of GLCM is shown in Fig. 4.5. It can be inferred from the table that performance

is relatively stable having very low variance across quantization levels.

Number of Levels SROCC LCC

No patch weighting 0.8041 0.8161
5 0.8315 0.8395
10 0.8237 0.8362
13 0.8318 0.8395
20 0.8226 0.8315
24 0.8260 0.8351
29 0.8158 0.8253
43 0.8087 0.8177
64 0.8058 0.8171
128 0.8039 0.8180
256 0.8045 0.8199

2 3 4 5 6 7 8
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Figure 4.5: Effect of number of quantization levels of GLCM on the performance, median values
of SROCC and LCC for 1000 iterations of randomly chosen train and test sets
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4.6 Time Complexity

The computational complexity of SIQE is mainly dependent on computations of steerable py-

ramid decompositions, parameter estimation of the GGD model and the EM algorithm for

estimating GMM parameters. In Table 4.8 we list the relative time taken at each stage for qua-

lity computation (once trained). It can be noted that bulk of the time is spent in estimating

GMM parameters owing to the iterative nature of the EM algorithm.

We also compare the overall time taken by SIQE with BRISQUE, NIQE and DIIVINE in

Table 4.6. The values reported are for a 100×100 image patch run on a 4 GHz PC with 32 GB

RAM. We use unoptimized MATLAB code for all algorithms for ensuring a fair comparison.

As Table 4.6 demonstrates, while SIQE takes more time than BRISQUE and NIQE, the time

taken is lesser than DIIVINE which also uses a multi-orientation decomposition.

Step Percentage of time

Steerable Pyramid 2.92
Decomposition

GGD 3.21
GMM 93.8

Table 4.8: Complexity analysis in SIQE. Values reflect the percentage of time spent on each
step in SIQE

Algorithm Time (seconds)

BRISQUE 0.1092
NIQE 0.0116

DIIVINE 1.2369
SIQE 1.0534

Table 4.9: Comparison of the amount of time taken to compute various quality measures for a
100× 100 image patch
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Conclusion and Future Work

We presented a subjective study to evaluate the effects of stitching induced distortions in the

context of VR applications. This study consists of 264 stitched images derived from 26 scenes

and evaluated by 35 subjects. The resulting IISc Stitched Image Quality Assessment (ISIQA)

Database is unique in terms of content as well as types of distortions present and is publicly

available for research purposes [1].

We proposed a steerable pyramid based model for quality assessment of stitched images

- the Stitched Image Quality Evaluator (SIQE) and evaluated its performance on the ISIQA

database. An important characteristic of SIQE is that it does not require the knowledge of the

stitching algorithm. We detailed the SIQE framework and the features extracted, in particular

the features obtained from the bivariate model and its significance in capturing additional

correlations arising due to distortions. We performed a holistic evaluation of SIQE in terms of

correlation with human perception and established that the performance of SIQE is superior and

more robust than the existing NR algorithms. We conducted ablation studies where we analyzed

each conceptual feature individually to gauge its contribution and demonstrated the importance

of employing features from both marginal statistics of divisive normalized coefficients as well

as bivariate statistics of unnormalized coefficients. We also substantiated the consequence of
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using features from constituent images in conjunction with features from stitched images in

enhancing the performance when compared to employing features only from stitched images.

A software release of SIQE has been made available online [1].

In our proposed model we did not explicitly design features that account for color distortions.

In Sec. 2.5 we made an important observation that in many of the images with color distortions

the MOS values are relatively closer to images which have little or no distortion. This raises an

important question about the relevance of color distortion in the context of VR applications.

The possibility of improving the performance by designing features that capture color artifacts

remains an open question. Another aspect we have not addressed in this work concerns the

problem of geometric shape changes that occur due to stitching. This again requires a more

careful consideration as shape changes need not always be a perceivable distortion and hence

its relevance in stitched image QA needs to be investigated further.



Appendix A

Decrease in Variance due to Ghosting

Rewriting Equation 3.1 associated with blending stage with reference to Fig. 3.2, where X

denotes the set of all coordinates representing the overlapping region in I1 and for any x ∈ X

I(x) = (1− α(x))I1(x) + α(x)I2(Hx), (A.1)

where α(x) ∈ (0, 1) denotes the weighting value at location x. Ghosting is observed when

I1(x) 6= I2(Hx) for any x ∈ X. Also in the case of perfect alignment I1(x) = I2(Hx) holds true

resulting in I(x) = I1(x) when substituted in Equation A.1, thus implying absence of ghosting.

Let L represent the kernel associated with steerable pyramid decompositions. Applying L on

Equation A.1 from Equation A.1 we obtain

L ∗ I(x) = L ∗ ((1− α(x))I1(x)) + L ∗ (α(x)I2(Hx)). (A.2)

For simplicity we neglect the notation x and represent L ∗ I(x) as LI. Following similar

convention for I1(x) and I2(Hx) in Equation A.2 we get

LI = α(LI2 − LI1) + LI1. (A.3)



Chapter A. Decrease in Variance due to Ghosting 45

In order to show that Var(LI) ≤ Var(LI1) or Var(LI) ≤ Var(LI2), we assume that E[LI1] = 0,

E[LI2] = 0, E[LI] = 0 (E denotes expectation operator) as steerable decomposition results

in zero mean subbands. Also we assume that
√

E[LI21 ] =
√

E[LI22 ], which is reasonable as

overlapping regions have similar content in them resulting in similar statistics. Under these

assumptions and α being a deterministic quantity, we obtain

E[LI2] = α2E[LI22 ] + α2E[LI21 ]− 2α2E[LI1LI2] + E[LI21 ] + 2αE[LI1LI2]− 2αE[LI21 ],

=⇒ E[LI2]− E[LI21 ] = α(E[LI21 ](α− 2) + αE[LI22 ] + 2E[LI1LI2](1− α)). (A.4)

Applying Cauchy-Schwarz inequality E[AB] ≤
√
E[A2]

√
E[B2] with A = LI1, B = LI2 to

Equation A.4 we get

E[LI2]− E[LI21 ] ≤ α(E[LI21 ](α− 2) + αE[LI22 ] + 2
√

E[LI21 ]
√
E[LI22 ](1− α)). (A.5)

As E[LI1] = 0, E[LI2] = 0, we obtain E[LI2] = Var(LI) and E[LI21 ] = Var(LI1). Denoting

E[LI21 ] = σ2(LI1) and E[LI22 ] = σ2(LI2) in Equation A.5 leads to

Var(LI)− Var(LI1) ≤ α(σ2(LI1)(α− 2) + ασ2(LI2) + 2σ(LI1)σ(LI2)(1− α)), (A.6)

=⇒ Var(LI)− Var(LI1) ≤ α(ασ(LI2)− (α− 2)σ(LI1))(σ(LI2)− σ(LI1)) (A.7)

Using the assumption
√
E[LI21 ] =

√
E[LI22 ] which is equivalent to σ(LI1) = σ(LI2), in Equation

A.7 we get

Var(LI)− Var(LI1) ≤ 0, (A.8)

=⇒ Var(LI) ≤ Var(LI1) (A.9)

Therefore variance decreases due to ghosting under the assumption
√

E[LI21 ] =
√

E[LI22 ].
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