Subjective and Objective Quality Assessment of Stitched Images for Virtual Reality

Pavan C M

M Tech (Research) Candidate Advisor: Dr. Rajiv Soundararajan Department of Electrical Communication Engineering Indian Institute of Science, Bangalore

Thesis Defense October 26, 2018

Outline of the Talk

Introduction

- Problem Definition
- Challenges
- Prior Work

Overview

- Database and Subjective Quality Assessment
- Automatic Quality Assessment Algorithm

- Section 2 Constraints and Results
- Onclusion and Future Work

Outline of the Talk

Introduction

- Problem Definition
- Challenges
- Prior Work

2 Thesis Overview

- Database and Subjective Quality Assessment
- Automatic Quality Assessment Algorithm

Experiments and Results

Onclusion and Future Work

Introduction

- Virtual Reality (VR) immersive experience through wide field of view images/videos
- VR applications motion pictures, cinematic VR, immersive storytelling etc.
- Head mounted displays (HMD) freedom to choose desired views
- Wide field of view images stitching multiple images with overlapping views

Introduction

- Stitching algorithm multiple stages
 - Each stage influence on quality of stitched image

- VR popularity necessity for quality control
- **Relevance** benchmark, tune parameters and compare various stitching algorithms.

Problem Statement

- Development of quality index captures stitching induced distortions
 - · Ghosting and blur inaccurate matching of feature points

Ghosting

Blur

Color Distortion

Geometric

Ghosting

Blur

Development of quality index - captures stitching induced distortions

- · Ghosting and blur inaccurate matching of feature points
- Color distortion images with different exposure levels

Ghosting

Blur

Color Distortion

Geometric

Color Distortion

Pavan

Development of quality index - captures stitching induced distortions

- · Ghosting and blur inaccurate matching of feature points
- Color distortion images with different exposure levels
- Geometric distortion improper blending of multiple images

Ghosting

Blur

Color Distortion

Geometric

Geometric

Development of quality index - captures stitching induced distortions

- Ghosting and blur inaccurate matching of feature points
- Color distortion images with different exposure levels
- Geometric distortion improper blending of multiple images

Ghosting

Blur

Color Distortion

Geometric

• Stitching induced distortions - specific to stitched images

• Absence of reference stitched images - not full reference quality assessment

- Absence of reference stitched images not full reference quality assessment
- Constituent images reference information

Problem Setup - Assumption

- Absence of reference stitched images not full reference quality assessment
- Constituent images reference information

 $\ensuremath{\mathsf{Assumptions}}$ - access to individual and stitched images, no knowledge of stitching algorithm

Pavan	Stitched Image QA	October 26, 2018	6 / 42

Prior Art - No Reference Quality Assessment (QA)

- No Reference (NR) quality assessment rich literature and widely studied
- Natural Scene Statistics (NSS) DIIVINE[Moorthy2011], BRISQUE [Mittal2012], NIQE [Mittal2013]

 Existing QA - do not address types of distortions observed in stitched images

Prior Art - QA in Stitched Images

- [WeiXu2010] evaluates color similarity and structural similarity
 - Restrictive model uses pointwise comparison, can be inaccurate
- [Qureshi2012] computes color and structural similarity in overlapping regions
 - Extension of [WeiXu2010] uses high pass content in overlapping region for structural similarity
- Above algorithms not evaluated on subjective database

Contributions

- Stitched image quality assessment database
 - Stitched images captured across diverse scenes
 - Subjective evaluation perception of distortions
- Objective quality assessment
 - Natural scene statistics model
 - Bivariate statistics increased correlations due to distortions
 - Correlates well with human perception

Outline of the Talk

Introduction

- Problem Definition
- Challenges
- Prior Work

2 Thesis Overview

- Database and Subjective Quality Assessment
- Automatic Quality Assessment Algorithm

Experiments and Results

Onclusion and Future Work

- Stitched image quality assessment database
 - $\bullet\,$ Images from 26 scenes buildings, gardens, indoor and public places
 - $\bullet~264$ stitched images fusing multiple views with overlapping regions
 - Static scenes no object motion

- Stitched image quality assessment database
 - $\bullet\,$ Images from 26 scenes buildings, gardens, indoor and public places
 - $\bullet\ 264$ stitched images fusing multiple views with overlapping regions
 - Static scenes no object motion
- Stitched image quality
 - Choice of algorithm for each stage
 - Parameter options associated with each block

- Stitched image quality assessment database
 - $\bullet\,$ Images from 26 scenes buildings, gardens, indoor and public places
 - $\bullet~264$ stitched images fusing multiple views with overlapping regions
 - Static scenes no object motion
- Stitched image quality
 - Choice of algorithm for each stage
 - Parameter options associated with each block

Feature Detection, Matching and Outlier Removal

- Image alignment detecting keypoints in overlapping regions
 - Detection and matching- SIFT
 - Outlier removal Random Sample Consensus

Figure: Keypoint Detection

Figure: Keypoint Matching

Figure: Outlier removal

Pavan

Stitched Image QA

- Stitched image quality assessment database
 - $\bullet\,$ Images from 26 scenes buildings, gardens, indoor and public places
 - $\bullet\ 264$ stitched images fusing multiple views with overlapping regions
 - Static scenes no object motion
- Stitched image quality
 - Choice of algorithm for each stage
 - Parameter options associated with each block

Homography and Image Warping

• Warp - transformation on co-ordinates for aligning overlapping regions

- Homography generalized transform, Direct Linear Transform (DLT)
- Moving DLT [Zaragoza2013] (MDLT) patch level homography
- Shape preserving warp (SPHP) [Chang2014] constrained homography

Homography

MDLT

SPHP

Homography

Pavan

- Stitched image quality assessment database
 - $\bullet\,$ Images from 26 scenes buildings, gardens, indoor and public places
 - $\bullet\ 264$ stitched images fusing multiple views with overlapping regions
 - Static scenes no object motion
- Stitched image quality
 - Choice of algorithm for each stage
 - Parameter options associated with each block

Image Blending

- Blending fusing multiple images to form single composite image
 - Smooth transition with no visible seams
- Feathering weighted averaging
- Multiband Laplacian pyramid based blending
- Poisson gradient domain, optimizing the cost function

Feathering with exposure compensation

Poisson

- Stitched image quality assessment database
 - $\bullet\,$ Images from 26 scenes buildings, gardens, indoor and public places
 - $\bullet\ 264$ stitched images fusing multiple views with overlapping regions
 - Static scenes no object motion
- Stitched image quality
 - Choice of algorithm for each stage
 - Parameter options associated with each block

• Major impairments - ghosting, blur, geometric and color

Subjective Study

- Single stimulus continuous quality assessment
- Rating viewing images on a VR head mounted device (HMD)
- \bullet Images rated by 35 subjects across 3 sessions
- Processing of scores Mean Opinion Score (MOS) for each image after rejecting outliers

MOS = 21.546

MOS = 65.238

Distribution of MOS

Subjective Study

MOS = 21.546

MOS = 65.238

Pavan

Stitched Image QA

Outline of the Talk

Introduction

- Problem Definition
- Challenges
- Prior Work

Overview

- Database and Subjective Quality Assessment
- Automatic Quality Assessment Algorithm

Experiments and Results

Onclusion and Future Work

Stitched Image Quality Evaluator (SIQE) Framework

Origin of Distortions

Original

Original

Ghosting

Geometry

 $I(x) = (1 - \alpha(x))I_1(x) + \alpha(x)I_2(Hx), \quad \text{where } \alpha(x) \in (0, 1)$

• $I_1(x) \neq I_2(Hx)$ - combination of ghosting and blur

- Presence of additional edges
- Increased spatial correlation
- Geometric distortion presence of extraneous edges

Multi-Orientation Decomposition

Multi-Orientation Decomposition

- Structural artifacts from ghosting and geometric orientation dependent
- $\bullet\,$ Steerable pyramid decomposition 6 orientations, 2 scales for each $N\times N$ patch

Pavan

Divisive Normalization

Divisive Normalization

- Divisive Normalization $\hat{y} = y/p$ for subband coefficient y, with $p = \sqrt{Y^T C_U^{-1} Y/N}$ where C_U is the covariance of neighborhood around y, N number of neighbors
 - Contrast masking
 - Reduce statistical dependencies decorrelation
- Previously shown to capture blur in [Li2009], [Moorthy2011]
- Besides blur, captures edges introduced due to distortions
 - $\bullet\,$ Normalization factor p measure of local variance
 - p higher values near edges

Divisive Normalization - Modeling

- Ghosting and geometric distortions presence of additional edges
 - Distribution of distorted patch higher peak value at zero as $\hat{y}=y/p$
- Model Generalized Gaussian Distribution (GGD)
- Features GGD shape parameters

Original

Ghosting

Original

Geometry

Stitched Image QA

Bivariate Model

Bivariate Model

- Capturing increased spatial correlation in ghosting bivariate distribution
- Bivariate statistics adjacent subband coefficients $P(s^{\theta}_{\alpha}(x,y),s^{\theta}_{\alpha}(x+1,y))$ (with no divisive normalization)
- Distribution of ghosted patch higher peak value than undistorted distribution

Bivariate Model - Conditional Distribution Interpretation

• Conditional Statistics - $P(s^{\theta}_{\alpha}(x+1,y)/s^{\theta}_{\alpha}(x,y) \in (-\delta,\delta))$

Bivariate Model - Conditional Distribution Interpretation

• Conditional Statistics - $P(s^{\theta}_{\alpha}(x+1,y)/s^{\theta}_{\alpha}(x,y) \in (-\delta,\delta))$

Deviation between conditional distributions - higher than marginal distributions

Pavan

Bivariate Model - GMM and BGGD

• Previous approaches - Bivariate GGD - let $s^\theta_\alpha(x+1,y)=a,$ $s^\theta_\alpha(x,y)=b,$ $z=[a,b]^T$

$$f(z) = K \exp\left(-(z^T \mathbf{M}^{-1} z)^{\beta}\right)$$

- Bivariate Gaussian (BVG) BGGD with $\beta = 1$
- Our method Gaussian mixture model

$$f(a,b) = \sum_{i=1}^{M} \omega_i \mathcal{N}(\mathbf{0}, \Sigma_i)$$

- Components zero mean, distribution modeled by ω_i, Σ_i
- Parameter estimation Expectation Maximization (EM) algorithm
- GMM QA

Bivariate Model - Model Comparison

• Model comparisons - GMM and BGGD

Bivariate Model - Model Comparison

• Model comparisons - GMM and BVG

Bivariate Model - Features

• For
$$s^{\theta}_{\alpha}(x+1,y) = a$$
, $s^{\theta}_{\alpha}(x,y) = b$

$$f(a,b) = \sum_{i=1}^{n} \omega_i \mathcal{N}(\mathbf{0}, \Sigma_i)$$

• Covariance $C = \sum_{i=1}^{M} \omega_i \Sigma_i$, eigen values of C as features

• Horizontal -
$$s^{\theta}_{\alpha}(x+1,y) = a, s^{\theta}_{\alpha}(x,y) = b$$

• Vertical - $s^{\theta}_{\alpha}(x, y+1) = a$, $s^{\theta}_{\alpha}(x, y) = b$

Patch Weighting

Stitched Image QA

Patch Weighting

• All patches equal contribution?

- Ghosting and blur artifacts not perceived in smooth regions
- Gray level co-occurrence matrix (GLCM) [Haralick1973]
- Energy values of GLCM, $e \in [0,1]$, with e = 1 for constant image
- Patch weight w = 1 e
- Textured patches equal weights through non-linearity

$$g(w) = 1 - \exp\left(-\left(\frac{w}{\sigma}\right)^2\right)$$

Stitched Image QA

Stitched Image QA

Stitched Image QA

Prediction

Stitched Image QA

Outline of the Talk

Introduction

- Problem Definition
- Challenges
- Prior Work

Thesis Overview

- Database and Subjective Quality Assessment
- Automatic Quality Assessment Algorithm

Section 2 Constraints and Results

Onclusion and Future Work

Correlation with Human Judgments

- $\bullet\,$ Database 80% training and 20% testing with non overlap of scenes
- Performance metric Spearman rank order correlation coefficient (SROCC) and Pearson's linear correlation coefficient (LCC)
- Median performance value 1000 random train-test combinations
- Performance comparison NR QA metrics BRISQUE [Mittal2012], NIQE [Mittal2012], DIIVINE [Moorthy2011]

	SROCC	LCC
BRISQUE (trained on our database)	0.6224	0.5914
NIQE	0.1524	0.1051
DIIVINE (trained on our database)	0.5706	0.5897
SIQE	0.8318	0.8380

Table: Median correlation across 1000 iterations

Figure: Box plot of SROCC distributions over 1000 trials

Pavan

October 26, 2018 34 / 42

Significance of each conceptual feature

- Each conceptual feature tested in isolation
- Features only from stitched image drop in performance, importance of constituent images
 - NR setting higher performance than NR-IQA methods

Feature	SROCC	LCC
Marginal statistics model (f_{1-12})	0.7951	0.7934
Bivariate model (f_{13-36})	0.6825	0.6972
Features from stitched image (f_{1-36}^s)	0.6524	0.6816
(when constituent image features are omitted)		
SIQE $(f^s_{1-36} ext{ and } f^c_{1-36})$	0.8318	0.8380

Comparison with FR-QA Algorithms

- FR metric [WeiXu2010] and [Qureshi2012]
- Dependent on Pointwise correspondences
- Performance evaluation 238 images, images obtained from commercial stitching algorithms ignored

Feature	SROCC	LCC	
Xu (PSNR)	0.1795	0.2341	
Xu (SSIM)	0.3383	0.4077	
Qureshi	0.3238	0.3627	
SIQE	0.7848	0.8032	

Analysis of Color Distorted Images

- Scores for images with color distortion close to images with little or no distortion
- Color distortion less annoying when viewed on a HMD?
- $\bullet\,$ HMD $90^\circ\,$ field of view, instances of non-appearance of color distortion

(a) MOS = 61.7624

(b) MOS = 61.6771

(c) MOS = 59.7492

(d) MOS = 59.954

Pavan

Stitched Image QA

Outline of the Talk

Introduction

- Problem Definition
- Challenges
- Prior Work

Thesis Overview

- Database and Subjective Quality Assessment
- Automatic Quality Assessment Algorithm

Experiments and Results

Onclusion and Future Work

Conclusion

Subjective quality assessment

- Stitched image quality database
- Distortions ghosting, blur, geometric and color
- Subjective evaluation on VR
- Objective quality assessment
 - Independent of underlying stitching algorithm
 - Captures stitching induced distortions
 - High correlation with human judgments, outperforms existing quality measures
- Path ahead
 - Model color distortion characterization
 - Methods to account for geometric shape changes and their relevance in stitched image QA

References

- W. Xu and J. Mulligan, "Performance evaluation of color correction approaches for automatic multi-view image and video stitching," in IEEE Computer Vision and Pattern Recognition, June 2010, pp. 263-270.
- H. S. Qureshi, M. M. Khan, R. Hafiz, Y. Cho, and J. Cha, "Quantitative quality assessment of stitched panoramic images," IET Image Processing, vol. 6, no. 9, pp. 1348-1358, December 2012.
- A. K. Moorthy and A. C. Bovik, "Blind image quality assessment: From scene statistics to perceptual quality," IEEE Trans. Image Process., vol. 20, no. 12, Dec. 2011.
- A. Mittal, A. K. Moorthy, and A. C. Bovik, "No-reference image quality assessment in the spatial domain," IEEE Trans. Image Process., vol. 21, no. 12, pp. 4695-4708, Dec. 2012.

Acknowledgments

- Advisor Rajiv
- Funding agency Department of Science and Technology
- Volunteers of subjective study
- Labmates Sameer, Biju and others

Thank You!