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CHAPTER 1
Introduction

1.1 Image Warping

Image warping refers to the process of transformation of digital images such that any
shapes portrayed in the image may undergo deformation. Mathematically warping in-
volves mapping co-ordinates by a suitable function and resampling. Forward mapping
refers to obtaining warped image co-ordinates (x, y) from source image co-ordinates (u, v).
If source image is obtained from warped image, it is referred as reverse mapping (provided
the transformation is invertible). An example of warped images are shown in figure 1.1.

(a) Swirl (b) Kaleidoscope Effect (c) 3D Cube

Figure 1.1: Figures illustrating various warping methods applied on Taj Mahal image

In this project only a subclass of warping techniques known as projective transforma-
tions are studied. Projective transformations are represented by a matrix H of size 3× 3
and each co-ordinate of source image represented as x = (x1, x2, 1) undergoes transfor-
mation defined by the expression x′ = Hx. The matrix H is known as homography and
this transformation is also known as homographic transformation. Homography between
two planes is illustrated in figure 1.2.

Figure 1.2: Depiction of projective transformation between two planes π′ and π. Image
taken from [6]
.



x′ = Hxx′1x′2
x′3

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33

x1

x2

1

 (1.1)

Equation 1.1 shows the generic structure of homography. The matrix H has 9 variables
but only 8 degrees of freedom as h33 is a scale factor and not computed. Another con-
straint on equation 1.1 is that the matrix H has to be invertible.

Projective transforms/warps are applied extensively in areas such as image stitching,
video stabilization etc. In this project projective warps in the context of image stitching
is discussed. In case of image stitching, the two planes π′ and π depicted in figure 1.2 are
consecutive images taken from a rotating camera.

1.2 Direct Linear Transformations (DLT)

Basic image stitching pipeline is shown in figure 1.3. Two or more overlapping images
which are to be stitched are taken from a rotating camera. Features such as SIFT [1] or
SURF [2] are used for detecting as well as for describing keypoints in the input images.
Keypoints are matched using feature descriptors with a suitable distance measure (eg.
Euclidean distance). Matched features might not be robust and might contain some
outlier points, outliers are removed using Random Sample Consensus (RANSAC) [3].

Figure 1.3: Image Stitching Pipeline

1.2.1 Projective Warp

Let x = [x, y]T and x′ = [x′, y′]T be the matched points between images I and I ′ after
RANSAC procedure. A projective warp maps x and x′ using the equation

x̃′ ∼ Hx̃ (1.2)

where x̃ and x̃′ are in homogeneous co-ordinates and H ∈ R2×3. Equation 1.2 is valid
upto scale, where it is true for any any unknown scalar α, such that αx̃′ = Hx̃. DLT is
a basic method to estimate H from a set of noisy matched points {xi,x

′
i}

N
i=1. Equation

1.2 is rewritten as 03×1 = x̃′ ×Hx̃ and linearised

03×1 =

 03×1 −x̃T y′x̃T

x̃T 03×1 −x′x̃T

−y′x̃T x′x̃T 03×1

h, h =

h1

h2

h3

 (1.3)
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In equation 1.3 only two rows are linearly independent. Let ai ∈ R2×9 be the first two
rows of 1.3 calculated for the ith data {xi,x

′
i}. DLT estimates the nine element matrix

H as

h∗ = argmin
h

N∑
t=1

‖ath‖2 = argmin
h
‖Ah‖2 (1.4)

Equation 1.4 is solved with the constraint ‖h‖ = 1, with matrix A = R2N×9. The solution
to equation 1.4 is obtained by Singular Value Decomposition (SVD) and it corresponds
the least significant right singular vector of A (There exists a unique null vector since the
rank of null space of A is 1).

There are certain limitations associated with the above model. it assumes either the
images taken by the rotating camera is parallax free/purely rotational (no translation
should be present between two consecutive camera imaging positions) or imaging scene
has to be planar [4]. Deviation from the above assumptions results in stitching incon-
sistencies and it can manifest as ghosting artifact. The above limitation is illustrated in
figure 1.4

Figure 1.4: Image showing matching points in 2 images. Since the image violated ho-
mography conditions, there is a mismatch between the points. Ideally all the
points should have been overlapping.

1.3 Moving DLT or Local Homography

The conditions required for application of homography model is rarely achieved in prac-
tice, as there exists some amount of translation between consecutive images. There are
two ways by which ghosting introduced by image misaligment can be overcome, one is
using suitable deghosting methods in the blending stage of image stitching pipeline shown
in figure 1.3 and the other one being usage of alternative models for homography in the
alignment stage. Moving DLT or local homography introduced in [5] modifies homogra-
phy model to reduce stitching inconsistencies when required conditions for homography
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model are violated. The idea of local homography is to warp each x̃ using a location
dependent homography

x̃′∗ ∼ H∗x̃∗ (1.5)

where H∗ is estimated from the weighted optimization problem

h∗ = argmin
h

N∑
t=1

‖wt
∗ath‖2 (1.6)

under the constraint ‖h| = 1. The weights {wt
∗}

N
t=1 change according to location x∗. An

example of weighting function is

wt
∗ = exp

(
−‖x∗ − xt‖

2

σ2

)
(1.7)

Here σ is a parameter controlling the effect of neighboring pixels and xt is the co-ordinate
of the matched point in the source image. it can be observed in equation 1.7 that pixels
near xt get higher weightage than those very far. Since homography is computed with
respect to every pixel x∗, this method is known as local homography.
The problem in equation 1.6 can be written in matrix form as

h∗ = argmin
h
‖W∗Ah‖2 (1.8)

where W∗ ∈ R2N×2N is the weight matrix composed as

W∗ = diag
(
w1
∗ w1

∗ . . . wN
∗ wN

∗
)

(1.9)

Equation 1.8 is a weighted SVD (WSVD) problem and the solution is the least significant
right singular vector of W∗A. To avoid numerical issues when points are very far, the
weight w∗ is offset by a parameter γ ∈ [0, 1]

wt
∗ = max

(
exp

(
−‖x∗ − xt‖

2

σ2

)
, γ

)
(1.10)
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CHAPTER 2
Observations and Results

2.0.1 Implementation Details

Given input images are subjected feature detection and matching using VLFeat library [7].
The mismatches among {xt, x′t}

N
t=1 are removed using RANSAC [3]. Solving equation 1.8

for all pixel locations x∗ is not necessary as neghbouring estimates of H∗ yield practically
same estimates. So entire source image I is divided into C1 ×C2 cells as shown in figure
and within each cell all the pixels are subjected to same projective warp. Also weights
wt
∗ can be computed in parallel as all weights are independent. These drastically reduce

the computation time for local homography. The division of source image into cells is
shown in figure 2.1.

(a) Target Image (b) Source Image with cell division

Figure 2.1: Figure illustrating division of source image into cells. γ = 0.025, σ = 8 were
found to give best results for these images

During implementation, the values C1 and C2 were chosen from the range [50, 100].
The parameters in equation 1.10, γ and σ were found to vary across the dataset and no
single value was able to give best results for all images. Hence they were chosen on a case
by case basis. σ was varied in the range [8, 12] and γ in [0.0015, 0.025].

2.0.2 Observations

2.0.2.1 Variation of local homography

Histogram of the Frobenius norm of local homography calculated for every cell for a
source image is shown 2.2. it can be inferred from the histogram that one particular
homography is observed substantially higher (almost 55%) as compared to others. This
observation is also illustrated in the corresponding heatmap showed in 2.2. The heatmap
representa variation in local homography across source image. Regions with same color
are subjected to same homography. As observed in the heatmap, majority of the regions
undergo same projective transformation and the region of variation in local homography
is observed around the co-ordinates of matched points. The above observation generalizes
to all images in the dataset.



(a) Histogram of Frobenius norm of local
homographies

(b) Heatmap of Local Homography

Figure 2.2: Local homography variation

2.0.2.2 Qualitative Comparison

Image stitching with global homography (baseline) and local homography were qualita-
tively compared and the results for 2 images are shown in figure 2.3. As evident from
the figure, local homography removes blurring and ghosting happening due to improper
image alignment. Global homography performs poorly as the views of the images do not
differ purely by rotation. Note that in the image stitching of overlapped regions, simple
averaging is performed. If exposure differences are present simple averaging results in
visible seams whose removal requires advanced blending methods. In this project only
the effect varying projective warps is studied.

2.0.2.3 Quantitative Comparison

To quantify the alignment accuracy of an estimated warping function f : R2 → R2, root
mean squared error of f on a the set of matched points {xt, x′t}

N
t=1is computed.

RMSE(f) =

√√√√ 1

N

N∑
t=1

‖f(xt)− f(x′t)‖2 (2.1)

This measure is obtained under the assumption that the matched correspondences are
reasonably accurate. This measure only gives information on how well matched points
are aligned in the overlapping region. This does not consider distortions appearing in
non-overlapping regions, therefore this does not always represent the perceptual quality
of stitched image. RMSE decreases for local homography in general for optimal σ and γ
values (although in some cases it can increase, the increased amount is generally small)
as compared to that of baseline.

2.0.2.4 Effect of σ

The effect of standard deviation parameter σ used in the weight function is shown in
figure 2.4. In certain images with sigmificant textures in the overlapping region or near
the overlapping region smaller σ values doesn’t result in smooth transition of local ho-
mography giving rise to visible discontinuities as observed in figure 2.4. Higher σ values
perform better in such cases.
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(a) Global homography (RMSE = 5.5

(d) Local homography (γ = 0.025, σ = 8)
(RMSE = 6.09)

(g) Global homography (RMSE = 15.62)

(j) Local homography (γ = 0.0015, σ = 12)
(RMSE = 13.38)

Figure 2.3: Global and Local homography comparison
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(a) σ = 8, γ = 0.025 (RMSE = 12.02)

(d) σ = 12, γ = 0.025 (RMSE = 13.1662)

Figure 2.4: variation of performance with σ

2.0.2.5 Effect of γ

The effect of offset value γ is shown in figure 2.5. Typically γ values affect the textured
regions which are far from the overlap region(region consisting matched keypoints), as
the weight function will be equal to γ value in that part of the image. Very large or very
small γ values might result in discontinuities in the stitched image due to sudden change
in weights across the region. γ values between the lower and higher extremes in images
generally produce better results.

(a) σ = 12, γ = 0.0025 (RMSE = 16.95)

(c) σ = 12, γ = 0.025 (RMSE = 12.38)

Figure 2.5: variation of performance with γ
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2.0.2.6 Variation with C1 and C2

Increase in C1 and C2 increases computational time for calculating local homographies.
Many a times high values of C1 and C2 is often wasteful as the neighbouring regions yield
practically same homography estimates as observed in figure 2.2. Figure 2.6 shows effect
of variation with different C1 and C2 values. Smaller C1 and C2 values results in ghosting
artifacts as homography is applied to larger regions, producing effects similar to those
observed in global homography.

(a) C1 = 25, C2 = 25 (RMSE = 3.91

(c) C1 = 100, C2 = 100 (RMSE = 3.89

Figure 2.6: variation with C1 and C2

2.1 Limitations

• The extrapolation of homographic transformation in the non-overlapping areas pro-
duce unnatural scaling effects resulting in perspective distortions. As shown in
equation 2.2, there exists a non linear relationship beween x and x′ (similarly y
and y′). Since H is calculated from corresponding points and extended to non-
overlapping regions, resulting in unnarural scaling. The amount of distortion can
be reduced by projecting image on a cylindrical plane as shown in figure 2.7.

x′ =
h11x+ h12y + h13

h31x+ h32y + h33

y′ =
h21x+ h22y + h23

h31x+ h32y + h33

(2.2)
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(a) Rectilinear Projection (b) Cylindrical Projection

Figure 2.7: Effect of compositing surface

• The performance of local homography is sensitive to parameters γ and σ. Careful
selection of these parameters is vital for obtaining best results.

• The isotropic nature of Gaussian weighting function results in ’wavy’ effects in final
stitched image, observed when γ values are very small.

Figure 2.8: ’Wavy’ effects
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CHAPTER 3
Shape Preserving Projective Warp

Local homography performs well in the overlapping regions, but introduces projective
distortions in non-overlapping parts resulting in unnatural stretching of shapes and en-
larging of sizes. Authors of [8] propose combination of projective and similarity warps to
overcome distortion. Similarity warp is a subclass of projective warp, which is only com-
posed of translation, scaling and rotation as shown in equation 3.1 and thus introduces
no shape distortion nor non-linear scaling. Also similarity warp is invariant to ratio of
lengths and angle, making a better candidate than homography. Similarity warp can be
interpreted as a combination of panning, zooming and camera in plane rotation.

S =

s cos θ −s sin θ tx
s sin θ s cos θ tx

0 0 1

 (3.1)

3.1 Proposed Warp

Let f be the proposed warping function f : R2 → R2 that maps x = [x, y]T and x′ =
[x′, y′]T . R2 is divided into two half-spaces RH and RL (They correspond to overlapping
and non-overlapping regions respectively). For (x, y) ∈ RH , local homography H∗ is used.
For other half space RL, the warping function continuously extrapolates H∗ to become
a similarity transformation S. Let (x, y) be the co-ordinates obtained from rotation of
(u, v) by an angle θ. (

x
y

)
=

(
cos θ − sin θ
sin θ cos θ

)(
u
v

)
(3.2)

After the change of co-ordinates, the homography equation 1.1 becomesx′y′
1

 ∼
h11 cos θ + h12 sin θ −h11 sin θ + h12 cos θ h13

h21 cos θ + h22 sin θ −h21 sin θ + h22 cos θ h23

h31 cos θ + h32 sin θ −h31 sin θ + h32 cos θ h33

uv
1

 (3.3)

Equation 3.3 is valid upto a scale factor. Hence we can choose h33 = 1. Choosing
θ = tan−1 h32

h31
, equation 3.3 can be simplified to

x′ =
h′11u+ h′12 + h′13

1− cu

y′ =
h′21u+ h′22 + h′23

1− cu

(3.4)

Where

(
h′11 h′12

h′21 h′22

)
=

(
h11 h12

h21 h22

)(
cos θ − sin θ
sin θ cos θ

)
(h′13, h

′
33) = (h13, h33)

c =
√
h2

31 + h2
32

(3.5)



3.1.0.7 Linearity property

The denominator term in equation 3.4 is dependent only on single parameter u as opposed
to equation 2.2 which depends on two parameters. Under certain conditions (constant
u) equation 3.4 results in a linear transformation which preserves ratio of lengths and
producing no shape distortion.

Let RH = {(u, v)|u ≤ u1} and RL = {(u, v)|u > u1} where u1 is the line partitioning
R2. For (u, v) ∈ RH , homography H∗ is applied and for (u, v) ∈ RL, similarity S is
applied. For continuity it is required to satisfy S(u1, v) = H∗(u1, v). This warp is only
C0 continuous, as it is not differentiable at u1, which results in bending of the image at
u1 .

(a) Original (b) Projective (c) Similarity

Figure 3.1: Comparison of various warps. Image taken from [8]

3.1.0.8 C1 extrapolation

To overcome distortions produced in C0,a genralized warp in C1 is proposed. Let RL be
divided into two regions RT = {(u, v)|u1 < u < u2} and RS = {(u, v)|u2 ≤ u}, where u1

and u2 are parameters of warping. The warping function f is given by

f(u, v) =


H∗(u, v) if (u, v) ∈ RH

T (u, v) if (u, v) ∈ RT

S(u, v) if (u, v) ∈ RS

(3.6)

Here T acts as a buffer when homography is gradually changed to similarity. For simplicity
T and S are parametrized as

S(u, v) =

(
α −β
β α

)(
u
v

)
+

(
tx
ty

)
T (u, v) =

(
fx(u)
fy(u)

)
v +

(
gx(u)
gy(u)

)
(3.7)

The parameters of S, α, β, tx, ty are obtained by invoking continuity and differentiabil-
ity property of f at u1 and u2. Functions fx(u), fy(u), gx(u), gy(u) are assumed to be
quadratic whose parameters are obtained in a similar fashion as that of S. The goal of
this warping method is to mintain perspective of each image with the warping function
approaching similarity transformation. In order to achieve this every image Ii is associ-
ated with a cost Ei as a function of u1 and u2 which measures the deviation of warp from
the nearest similarity in Frobenius norm

Ei(u1, u2) = min
ai,bi

∫ ∫
(x,y)∈Ωi

∥∥∥Ji(x, y, u1, u2)−
(
ai −bi
bi ai

)∥∥∥2

F
dx dy (3.8)
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Where Ωi is domain of Ii, Ji(x, y, u1, u2) is the Jacobian matrix of f evaluated at
(x, y) which will be a function of u1 and u2. The optimal value of u1 amd u2 is obtained
by minimizing Ei. In case of multiple images total energy is minimized.

3.2 Results

Local homography and shape preserving warp are compared in figure 3.2 Shape preserv-
ing warp removes the wavy distortion introduced by local homography resulting in more
natural looking panorama. Note that RMSE doesn’t change as compared to local homog-
raphy, as the warp corresponding to overlap region is not changing in shape preserving
warp.

(a) Local Homography (b) Shape Preserving Warp

Figure 3.2: Comparison of local homography and shape preserving warp

In certain images there appears to be a tradeoff between in performance in overlaping
and non-overlapping regions. Extensive similarity warping results in blurring of the image
in overlapping regions as observed in figure 3.3.

(a) Local Homography (b) Shape Preserving Warp

(c) Local Homography (d) Shape Preserving Warp

Figure 3.3: Blurring in overlapped regions
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Cylindrical projection also reduces projective distortion in non-overlaping regions as
stated in the previous section. Figure 3.4 compares cylindrical projection and shape
preserving warp. It can be inferred from the figure that cylindrical projection does not
reduce projective distortion always. However in certain cases cylindrical projection and
shape preserving warp performance is similar.

(a) Local Homography (b) Cylindrical Projection (c) Shape Preserving Warp

(d) Local Homography (e) Cylindrical Projection (f) Shape Preserving Warp

Figure 3.4: Comparison of various warps

3.3 Conclusion

In this project local homography based image warping methods as applicable to image
stitching was studied. Local homography performed better than global homography,
particularly in overlapping regions. However local homography suffered from perspective
distortions in non-overlapping parts. To overcome this similarity warp was proposed in
non-overlapping parts to preserve shape and size of objects observed in the image. Also
extensive similarity warps in certain images lead to blurring in overlapping parts.

In majority of the images shape preserving warp method performed well resulting in
natural looking panoramas. The distortions introduced by this method is reasonably low
and such distortions can be overcome by employing suitable blending algorithms.
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